Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1271407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020124

RESUMO

Introduction: Current guidelines recommend renin angiotensin system inhibitors (RASi) as key components of treatment of diabetic kidney disease (DKD). Additional options include sodium-glucose cotransporter-2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1a), and mineralocorticoid receptor antagonists (MCRa). The identification of the optimum drug combination for an individual is difficult because of the inter-, and longitudinal intra-individual heterogeneity of response to therapy. Results: Using data from a large observational study (PROVALID), we identified a set of parameters that can be combined into a meaningful composite biomarker that appears to be able to identify which of the various treatment options is clinically beneficial for an individual. It uses machine-earning techniques to estimate under what conditions a treatment of RASi plus an additional treatment is different from the treatment with RASi alone. The measure of difference is the annual percent change (ΔeGFR) in the estimated glomerular filtration rate (ΔeGFR). The 1eGFR is estimated for both the RASi-alone treatment and the add-on treatment. Discussion: Higher estimated increase of eGFR for add-on patients compared with RASi-alone patients indicates that prognosis may be improved with the add-on treatment. The personalized biomarker value thus identifies which patients may benefit from the additional treatment.

2.
Pharm Stat ; 20(4): 898-915, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768736

RESUMO

One of the main problems that the drug discovery research field confronts is to identify small molecules, modulators of protein function, which are likely to be therapeutically useful. Common practices rely on the screening of vast libraries of small molecules (often 1-2 million molecules) in order to identify a molecule, known as a lead molecule, which specifically inhibits or activates the protein function. To search for the lead molecule, we investigate the molecular structure, which generally consists of an extremely large number of fragments. Presence or absence of particular fragments, or groups of fragments, can strongly affect molecular properties. We study the relationship between molecular properties and its fragment composition by building a regression model, in which predictors, represented by binary variables indicating the presence or absence of fragments, are grouped in subsets and a bi-level penalization term is introduced for the high dimensionality of the problem. We evaluate the performance of this model in two simulation studies, comparing different penalization terms and different clustering techniques to derive the best predictor subsets structure. Both studies are characterized by small sets of data relative to the number of predictors under consideration. From the results of these simulation studies, we show that our approach can generate models able to identify key features and provide accurate predictions. The good performance of these models is then exhibited with real data about the MMP-12 enzyme.


Assuntos
Descoberta de Drogas , Análise por Conglomerados , Simulação por Computador , Humanos
3.
Sci Total Environ ; 703: 134972, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31759699

RESUMO

Oceans are changing faster than even observed before. Unprecedented climate variability is interacting with long-term trends, all against a backdrop of rising anthropogenic use of marine space. The growth of maritime activities is taking place without the full understanding of complex interactions between natural and human-induced changes, leading to a progressive decline of biodiversity and degradation of marine ecosystems. Against this complex interplay, marine managers and policy makers are increasingly calling for new approaches and tools allowing a multi-scenario assessment of environmental impacts arising from the complex interaction between natural and anthropogenic drivers, also in consideration of multiple marine plans objectives. Responding to this need, for the Adriatic Sea we developed a GIS-based Bayesian Network to evaluate the probability (and related uncertainty) of cumulative impacts under four 'what-if' scenarios representing different marine management options and climate conditions. We addressed issues concerning consequences of potential planning measures, as well as management programmes required to achieve environmental status targets, as required by relevant EU acquis. Results from the scenario analysis highlighted that an integrated approach to maritime spatial planning is required, combining more sustainable management options of marine spaces and resources with climate adaptation strategies. This approach to planning would allow to reduce human pressures on the marine environment and rise resilience of natural ecosystems to climate and human-induced disturbances, which would result in an overall decrease of cumulative impacts.

4.
J Microbiol Methods ; 128: 34-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27392938

RESUMO

The principal fungal species isolated from a contaminated library environment were tested for their microbial volatile organic compound (MVOC) production ability. Aspergillus creber, A. penicillioides, Cladosporium cladosporioides, Eurotium chevalieri, E. halophilicum, Penicillium brevicompactum and P. chrysogenum were cultivated on suitable culture media inside sample bottles specifically designed and created for direct MVOC injection to a GC-MS instrument. The fungal emissions were monitored over several weeks to detect changes with the aging of the colonies, monitored also by respirometric tests. A total of 55 different MVOCs were detected and isopropyl alcohol, 3-methyl-1-butanol and 2-butanone were the principal compounds in common between the selected fungal species. Moreover, 2,4-dimethylheptane, 1,4-pentadiene, styrene, ethanol, 2-methyl-1-butanol, acetone, furan and 2-methylfuran were the most detected compounds. For the first time, the MVOC production for particular fungal species was detected. The species A. creber, which belongs to the recently revised group Aspergillus section Versicolores, was characterized by the production of ethanol, furan and 1,4-pentadiene. For the xerophilic fungus E. halophilicum, specific production of acetone, 2-butanone and 1,4-pentadiene was detected, supported also by respirometric data. The results demonstrated the potential use of this method for the detection of fungal contamination phenomena inside Cultural Heritage's preservation environments.


Assuntos
Microbiologia Ambiental , Fungos/química , Bibliotecas , Compostos Orgânicos Voláteis/análise , Aspergillus/química , Aspergillus/isolamento & purificação , Butanonas/análise , Cladosporium/química , Cladosporium/isolamento & purificação , Meios de Cultura/química , Fungos/classificação , Furanos/análise , Cromatografia Gasosa-Espectrometria de Massas , Penicillium/química , Penicillium/isolamento & purificação , Pentanóis/análise , Análise de Componente Principal
5.
Comput Math Methods Med ; 2014: 258627, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24527058

RESUMO

The design of new molecules with desired properties is in general a very difficult problem, involving heavy experimentation with high investment of resources and possible negative impact on the environment. The standard approach consists of iteration among formulation, synthesis, and testing cycles, which is a very long and laborious process. In this paper we address the so-called lead optimisation process by developing a new strategy to design experiments and modelling data, namely, the evolutionary model-based design for optimisation (EDO). This approach is developed on a very small set of experimental points, which change in relation to the response of the experimentation according to the principle of evolution and insights gained through statistical models. This new procedure is validated on a data set provided as test environment by Pickett et al. (2011), and the results are analysed and compared to the genetic algorithm optimisation (GAO) as a benchmark. The very good performance of the EDO approach is shown in its capacity to uncover the optimum value using a very limited set of experimental points, avoiding unnecessary experimentation.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Inibidores Enzimáticos/química , Metaloproteinase 12 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Algoritmos , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Software
6.
PLoS One ; 7(5): e36634, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615786

RESUMO

Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA) in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity). The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random.


Assuntos
Evolução Biológica , Proteínas/metabolismo , Proteínas/classificação , Proteínas/genética
7.
BMC Bioinformatics ; 10 Suppl 6: S22, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19534748

RESUMO

BACKGROUND: The number of natural proteins represents a small fraction of all the possible protein sequences and there is an enormous number of proteins never sampled by nature, the so called "never born proteins" (NBPs). A fundamental question in this regard is if the ensemble of natural proteins possesses peculiar chemical and physical properties or if it is just the product of contingency coupled to functional selection. A key feature of natural proteins is their ability to form a well defined three-dimensional structure. Thus, the structural study of NBPs can help to understand if natural protein sequences were selected for their peculiar properties or if they are just one of the possible stable and functional ensembles. METHODS: The structural characterization of a huge number of random proteins cannot be approached experimentally, thus the problem has been tackled using a computational approach. A large random protein sequences library (2 x 10(4) sequences) was generated, discarding amino acid sequences with significant similarity to natural proteins, and the corresponding structures were predicted using Rosetta. Given the highly computational demanding problem, Rosetta was ported in grid and a user friendly job submission environment was developed within the GENIUS Grid Portal. Protein structures generated were analysed in terms of net charge, secondary structure content, surface/volume ratio, hydrophobic core composition, etc. RESULTS: The vast majority of NBPs, according to the Rosetta model, are characterized by a compact three-dimensional structure with a high secondary structure content. Structure compactness and surface polarity are comparable to those of natural proteins, suggesting similar stability and solubility. Deviations are observed in alpha helix-beta strands relative content and in hydrophobic core composition, as NBPs appear to be richer in helical structure and aromatic amino acids with respect to natural proteins. CONCLUSION: The results obtained suggest that the ability to form a compact, ordered and water-soluble structure is an intrinsic property of polypeptides. The tendency of random sequences to adopt alpha helical folds indicate that all-alpha proteins may have emerged early in pre-biotic evolution. Further, the lower percentage of aromatic residues observed in natural proteins has important evolutionary implications as far as tolerance to mutations is concerned.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...