Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794330

RESUMO

Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.

2.
Pharmaceutics ; 15(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36839856

RESUMO

Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.

3.
Biotechnol Adv ; 64: 108122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813011

RESUMO

Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.


Assuntos
Vesículas Extracelulares , Nanopartículas , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos , RNA , Preparações Farmacêuticas/metabolismo
4.
Funct Plant Biol ; 48(10): 994-1004, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210384

RESUMO

Neonicotinoid insecticides are used against the wide range of pests to protect plants. The influence of neonicotinoids on target and non-target insects is well understood. Hence, there are controversial opinions about the effect of neonicotinoids on the plants. We investigated pigments and photosynthetic primary reactions in two maize genotypes (the inbred line zppl 225 and hybrid zp 341) under thiamethoxam (TMX) treatment by root irrigation. It was found that the effect of TMX depended on pesticide application techniques and selection of maize genotype. TMX was added to the soil by root irrigation on the 4th and 8th days after planting, and photosynthetic characteristics monitored on the 10th and 12th days after planting. The primary photochemical reactions in PSII (Fv/Fm) of both maize genotypes were not affected under two variants of TMX treatment during all growing period. The hybrid zp341 was shown to be more susceptible to both TMX treatments, demonstrating a decrease in photosynthetic characteristics (JIP-test parameters) as well as changes in the content of pigments and in the conformation of the carotenoid molecule. Our findings suggest that the combination of fluorescence method and Raman spectroscopy is a perspective tool for monitoring plant state under pesticide application.


Assuntos
Fotossíntese , Zea mays , Genótipo , Neonicotinoides/toxicidade , Tiametoxam , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...