Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481539

RESUMO

Honey, honey extracts, and bee products belong to traditionally used bioactive molecules in many areas. The aim of the study was primarily to evaluate the effect of cosmetic matrices containing honey and bee products on the skin. The study is complemented by a questionnaire survey on the knowledge and awareness of the effects and potential uses of bee products. The effect of bee molecules at various concentrations was observed by applying 12 formulations to the skin of the volar side of the forearm by non-invasive bioengineering methods on a set of 24 volunteers for 48 h. Very good moisturizing properties have been found in matrices with the glycerin extract of honey. Matrices containing forest honey had better moisturizing effects than those containing flower honey. Barrier properties were enhanced by gradual absorption, especially in formulations with both glycerin and aqueous honey extract. The observed organoleptic properties of the matrices assessed by sensory analysis through 12 evaluators did not show statistically significant differences except for color and spreadability. There are differences in the ability to hydrate the skin, reduce the loss of epidermal water, and affect the pH of the skin surface, including the organoleptic properties between honey and bee product matrices according to their type and concentration.


Assuntos
Abelhas , Cosméticos , Animais , Emulsões/química , Mel , Concentração de Íons de Hidrogênio , Inquéritos e Questionários
2.
Water Environ Res ; 84(12): 2123-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342944

RESUMO

Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., gamma-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment plants.


Assuntos
Povidona/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa , Hidrólise , Povidona/química , Esgotos
3.
J Environ Manage ; 94(1): 13-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098784

RESUMO

This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, ß-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.


Assuntos
Recuperação e Remediação Ambiental , Ácidos Ftálicos/química , Purificação da Água/métodos , Adsorção , Biomassa , Carvão Vegetal/química , Quitosana/química , Alga Marinha/química , Esgotos/química , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...