Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2405840121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900798

RESUMO

Proteomics has been revolutionized by large protein language models (PLMs), which learn unsupervised representations from large corpora of sequences. These models are typically fine-tuned in a supervised setting to adapt the model to specific downstream tasks. However, the computational and memory footprint of fine-tuning (FT) large PLMs presents a barrier for many research groups with limited computational resources. Natural language processing has seen a similar explosion in the size of models, where these challenges have been addressed by methods for parameter-efficient fine-tuning (PEFT). In this work, we introduce this paradigm to proteomics through leveraging the parameter-efficient method LoRA and training new models for two important tasks: predicting protein-protein interactions (PPIs) and predicting the symmetry of homooligomer quaternary structures. We show that these approaches are competitive with traditional FT while requiring reduced memory and substantially fewer parameters. We additionally show that for the PPI prediction task, training only the classification head also remains competitive with full FT, using five orders of magnitude fewer parameters, and that each of these methods outperform state-of-the-art PPI prediction methods with substantially reduced compute. We further perform a comprehensive evaluation of the hyperparameter space, demonstrate that PEFT of PLMs is robust to variations in these hyperparameters, and elucidate where best practices for PEFT in proteomics differ from those in natural language processing. All our model adaptation and evaluation code is available open-source at https://github.com/microsoft/peft_proteomics. Thus, we provide a blueprint to democratize the power of PLM adaptation to groups with limited computational resources.


Assuntos
Proteômica , Proteômica/métodos , Proteínas/química , Proteínas/metabolismo , Processamento de Linguagem Natural , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Humanos , Algoritmos
2.
Res Sq ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38746169

RESUMO

The majority of proteins must form higher-order assemblies to perform their biological functions. Despite the importance of protein quaternary structure, there are few machine learning models that can accurately and rapidly predict the symmetry of assemblies involving multiple copies of the same protein chain. Here, we address this gap by training several classes of protein foundation models, including ESM-MSA, ESM2, and RoseTTAFold2, to predict homo-oligomer symmetry. Our best model named Seq2Symm, which utilizes ESM2, outperforms existing template-based and deep learning methods. It achieves an average PR-AUC of 0.48 and 0.44 across homo-oligomer symmetries on two different held-out test sets compared to 0.32 and 0.23 for the template-based method. Because Seq2Symm can rapidly predict homo-oligomer symmetries using a single sequence as input (~ 80,000 proteins/hour), we have applied it to 5 entire proteomes and ~ 3.5 million unlabeled protein sequences to identify patterns in protein assembly complexity across biological kingdoms and species.

3.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986761

RESUMO

Proteomics has been revolutionized by large pre-trained protein language models, which learn unsupervised representations from large corpora of sequences. The parameters of these models are then fine-tuned in a supervised setting to tailor the model to a specific downstream task. However, as model size increases, the computational and memory footprint of fine-tuning becomes a barrier for many research groups. In the field of natural language processing, which has seen a similar explosion in the size of models, these challenges have been addressed by methods for parameter-efficient fine-tuning (PEFT). In this work, we newly bring parameter-efficient fine-tuning methods to proteomics. Using the parameter-efficient method LoRA, we train new models for two important proteomic tasks: predicting protein-protein interactions (PPI) and predicting the symmetry of homooligomers. We show that for homooligomer symmetry prediction, these approaches achieve performance competitive with traditional fine-tuning while requiring reduced memory and using three orders of magnitude fewer parameters. On the PPI prediction task, we surprisingly find that PEFT models actually outperform traditional fine-tuning while using two orders of magnitude fewer parameters. Here, we go even further to show that freezing the parameters of the language model and training only a classification head also outperforms fine-tuning, using five orders of magnitude fewer parameters, and that both of these models outperform state-of-the-art PPI prediction methods with substantially reduced compute. We also demonstrate that PEFT is robust to variations in training hyper-parameters, and elucidate where best practices for PEFT in proteomics differ from in natural language processing. Thus, we provide a blueprint to democratize the power of protein language model tuning to groups which have limited computational resources.

4.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897686

RESUMO

MOTIVATION: High-quality computational structural models are now precomputed and available for nearly every protein in UniProt. However, the best way to leverage these models to predict which pairs of proteins interact in a high-throughput manner is not immediately clear. The recent Foldseek method of van Kempen et al. encodes the structural information of distances and angles along the protein backbone into a linear string of the same length as the protein string, using tokens from a 21-letter discretized structural alphabet (3Di). RESULTS: We show that using both the amino acid sequence and the 3Di sequence generated by Foldseek as inputs to our recent deep-learning method, Topsy-Turvy, substantially improves the performance of predicting protein-protein interactions cross-species. Thus TT3D (Topsy-Turvy 3D) presents a way to reuse all the computational effort going into producing high-quality structural models from sequence, while being sufficiently lightweight so that high-quality binary protein-protein interaction predictions across all protein pairs can be made genome-wide. AVAILABILITY AND IMPLEMENTATION: TT3D is available at https://github.com/samsledje/D-SCRIPT. An archived version of the code at time of submission can be found at https://zenodo.org/records/10037674.


Assuntos
Proteínas , Software , Sequência de Aminoácidos , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 120(24): e2220778120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37289807

RESUMO

Sequence-based prediction of drug-target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computational techniques fail to simultaneously meet these goals, often sacrificing performance of one to achieve the others. We develop a deep learning model, ConPLex, successfully leveraging the advances in pretrained protein language models ("PLex") and employing a protein-anchored contrastive coembedding ("Con") to outperform state-of-the-art approaches. ConPLex achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy compounds. It makes predictions of binding based on the distance between learned representations, enabling predictions at the scale of massive compound libraries and the human proteome. Experimental testing of 19 kinase-drug interaction predictions validated 12 interactions, including four with subnanomolar affinity, plus a strongly binding EPHB1 inhibitor (KD = 1.3 nM). Furthermore, ConPLex embeddings are interpretable, which enables us to visualize the drug-target embedding space and use embeddings to characterize the function of human cell-surface proteins. We anticipate that ConPLex will facilitate efficient drug discovery by making highly sensitive in silico drug screening feasible at the genome scale. ConPLex is available open source at https://ConPLex.csail.mit.edu.


Assuntos
Descoberta de Drogas , Proteínas , Humanos , Proteínas/química , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Idioma
6.
PLoS One ; 18(2): e0270965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735673

RESUMO

With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.


Assuntos
Antozoários , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Antozoários/genética , Antozoários/fisiologia , Genoma , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Modelos Animais
7.
J Comput Biol ; 30(1): 3-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125448

RESUMO

An accurate understanding of the evolutionary history of rapidly-evolving viruses like SARS-CoV-2, responsible for the COVID-19 pandemic, is crucial to tracking and preventing the spread of emerging pathogens. However, viruses undergo frequent recombination, which makes it difficult to trace their evolutionary history using traditional phylogenetic methods. In this study, we present a phylogenetic workflow, virDTL, for analyzing viral evolution in the presence of recombination. Our approach leverages reconciliation methods developed for inferring horizontal gene transfer in prokaryotes and, compared to existing tools, is uniquely able to identify ancestral recombinations while accounting for several sources of inference uncertainty, including in the construction of a strain tree, estimation and rooting of gene family trees, and reconciliation itself. We apply this workflow to the Sarbecovirus subgenus and demonstrate how a principled analysis of predicted recombination gives insight into the evolution of SARS-CoV-2. In addition to providing confirming evidence for the horseshoe bat as its zoonotic origin, we identify several ancestral recombination events that merit further study.


Assuntos
COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/genética , Filogenia , Pandemias , Transferência Genética Horizontal/genética , Quirópteros/genética , Genoma Viral/genética , Evolução Molecular
8.
Bioinformatics ; 38(Suppl 1): i264-i272, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758793

RESUMO

SUMMARY: Computational methods to predict protein-protein interaction (PPI) typically segregate into sequence-based 'bottom-up' methods that infer properties from the characteristics of the individual protein sequences, or global 'top-down' methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms. AVAILABILITY AND IMPLEMENTATION: https://topsyturvy.csail.mit.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Sequência de Aminoácidos , Mapeamento de Interação de Proteínas/métodos , Proteínas/genética , Proteínas/metabolismo
9.
Cell Syst ; 12(10): 969-982.e6, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536380

RESUMO

We combine advances in neural language modeling and structurally motivated design to develop D-SCRIPT, an interpretable and generalizable deep-learning model, which predicts interaction between two proteins using only their sequence and maintains high accuracy with limited training data and across species. We show that a D-SCRIPT model trained on 38,345 human PPIs enables significantly improved functional characterization of fly proteins compared with the state-of-the-art approach. Evaluating the same D-SCRIPT model on protein complexes with known 3D structure, we find that the inter-protein contact map output by D-SCRIPT has significant overlap with the ground truth. We apply D-SCRIPT to screen for PPIs in cow (Bos taurus) at a genome-wide scale and focusing on rumen physiology, identify functional gene modules related to metabolism and immune response. The predicted interactions can then be leveraged for function prediction at scale, addressing the genome-to-phenome challenge, especially in species where little data are available.


Assuntos
Fenômica , Proteínas , Animais , Bovinos , Proteínas/metabolismo
10.
Pac Symp Biocomput ; 26: 119-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691010

RESUMO

Many existing methods for estimation of infectious disease transmission networks use a phylogeny of the infecting strains as the basis for transmission network inference, and accurate network inference relies on accuracy of this underlying evolutionary history. However, phylogenetic reconstruction can be highly error prone and more sophisticated methods can fail to scale to larger outbreaks, negatively impacting downstream transmission network inference.We introduce a new method, TreeFix-TP, for accurate and scalable reconstruction of transmission phylogenies based on an error-correction framework. Our method uses intra-host strain diversity and host information to balance a parsimonious evaluation of the implied transmission network with statistical hypothesis testing on sequence data likelihood. The reconstructed tree minimizes the number of required disease transmissions while being as well supported by sequence data as the maximum likelihood phylogeny. Using a simulation framework for viral transmission and evolution and real data from ten HCV outbreaks, we demonstrate that error-correction with TreeFix-TP improves phylogenetic accuracy and outbreak source detection. Our results show that using TreeFix-TP can lead to significant improvement in transmission phylogeny inference and that its performance is robust to variations in transmission and evolutionary parameters. TreeFix-TP is freely available open-source from https://compbio.engr.uconn.edu/software/treefix-tp/.


Assuntos
Biologia Computacional , Software , Simulação por Computador , Humanos , Filogenia , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...