Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(8): 5478-5489, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29082409

RESUMO

The reaction between cyano radicals (which are ubiquitous in interstellar clouds) and methylamine (a molecule detected in various interstellar sources) has been investigated in a synergistic experimental and theoretical study. The reaction has been found to be very fast in the entire range of temperatures investigated (23-297 K) by using a CRESU apparatus coupled to pulsed laser photolysis - laser induced fluorescence. The global experimental rate coefficient is given by In addition, dedicated electronic structure calculations of the underlying potential energy surface have been performed, together with capture theory and RRKM calculations. The experimental data have been interpreted in the light of the theoretical calculations and the product branching ratio has been established. According to the present study, in the range of temperatures investigated the title reaction is an efficient interstellar route of formation of cyanamide, NH2CN, another interstellar species. The second most important channel is the one leading to methyl cyanamide, CH3NHCN (an isomer of aminoacetonitrile), via a CN/H exchange mechanism with a yield of 12% of the global reaction in the entire range of temperatures explored. For a possible inclusion in future astrochemical models we suggest, by referring to the usual expression the following values: α = 3.68 × 10-12 cm3 molec-1 s-1, ß = -1.80, γ = 7.79 K for the channel leading to NH2CN + CH3; α = 5.05 × 10-13 cm3 molec-1 s-1, ß = -1.82, γ = 7.93 K for the channel leading to CH3NHCN + H.

2.
Phys Chem Chem Phys ; 18(22): 15118-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199083

RESUMO

The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed.

3.
J Phys Chem A ; 117(1): 117-25, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23210721

RESUMO

The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...