Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37435943

RESUMO

The ability to predict transport properties of fluids, such as the self-diffusion coefficient and viscosity, has been an ongoing effort in the field of molecular modeling. While there are theoretical approaches to predict the transport properties of simple systems, they are typically applied in the dilute gas regime and are not directly applicable to more complex systems. Other attempts to predict transport properties are performed by fitting available experimental or molecular simulation data to empirical or semi-empirical correlations. Recently, there have been attempts to improve the accuracy of these fittings through the use of Machine-Learning (ML) methods. In this work, the application of ML algorithms to represent the transport properties of systems comprising spherical particles interacting via the Mie potential is investigated. To this end, the self-diffusion coefficient and shear viscosity of 54 potentials are obtained at different regions of the fluid-phase diagram. This data set is used together with three ML algorithms, namely, k-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Symbolic Regression (SR), to find correlations between the parameters of each potential and the transport properties at different densities and temperatures. It is shown that ANN and KNN perform to a similar extent, followed by SR, which exhibits larger deviations. Finally, the application of the three ML models to predict the self-diffusion coefficient of small molecular systems, such as krypton, methane, and carbon dioxide, is demonstrated using molecular parameters derived from the so-called SAFT-VR Mie equation of state [T. Lafitte et al. J. Chem. Phys. 139, 154504 (2013)] and available experimental vapor-liquid coexistence data.

2.
Phys Rev E ; 106(1-1): 014604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974591

RESUMO

By Molecular Dynamics simulation, we investigate the dynamics of isotropic fluids of colloidal nanotrimers whose interactions are described by varying the strength of attractive and repulsive terms of the Mie potential. To provide a consistent comparison between the systems described by different force fields, we determine the phase diagram and critical points of each system, characterize the morphology of high-density liquid phases at the same reduced temperature and density, and finally investigate their long-time relaxation dynamics. In particular, we detect an especially complex dynamics that reveals the existence of slow and fast nanotrimers and the resulting occurrence of non-Gaussianity, which develops at intermediate timescales. Deviations from Gaussianity are temporary and vanish within the timescales of the system's density fluctuations decay, when a Fickian-like diffusion regime is eventually observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...