Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986722

RESUMO

An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE: This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.


Assuntos
Infecções Bacterianas/diagnóstico , Infecção Hospitalar/diagnóstico , DNA Bacteriano/análise , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Acinetobacter baumannii/classificação , Acinetobacter baumannii/genética , Infecções Bacterianas/microbiologia , Infecção Hospitalar/microbiologia , Primers do DNA/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Enterobacter/classificação , Enterobacter/genética , Enterococcus faecium/classificação , Enterococcus faecium/genética , Humanos , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Microfluídica/instrumentação , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Staphylococcus aureus/classificação , Staphylococcus aureus/genética
2.
Health Secur ; 14(3): 122-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314653

RESUMO

The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.


Assuntos
Biovigilância/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Imunoensaio/métodos , Espectrometria de Massas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vigilância em Saúde Pública/métodos , Humanos
3.
BMC Res Notes ; 8: 682, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26572552

RESUMO

BACKGROUND: Historically, identification of causal agents of disease has relied heavily on the ability to culture the organism in the laboratory and/or the use of pathogen-specific antibodies or sequence-based probes. However, these methods can be limiting: Even highly sensitive PCR-based assays must be continually updated due to signature degradation as new target strains and near neighbors are sequenced. Thus, there has been a need for assays that do not suffer as greatly from these limitations and/or biases. Recent advances in library preparation technologies for Next-Generation Sequencing (NGS) are focusing on the use of targeted amplification and targeted enrichment/capture to ensure that the most highly discriminating regions of the genomes of known targets (organism-unique regions and/or regions containing functionally important genes or phylogenetically-discriminating SNPs) will be sequenced, regardless of the complex sample background. RESULTS: In the present study, we have assessed the feasibility of targeted sequence enhancement via amplification to facilitate detection of a bacterial pathogen present in low copy numbers in a background of human genomic material. Our results indicate that the targeted amplification of signature regions can effectively identify pathogen genomic material present in as little as 10 copies per ml in a complex sample. Importantly, the correct species and strain calls could be made in amplified samples, while this was not possible in unamplified samples. CONCLUSIONS: The results presented here demonstrate the efficacy of a targeted amplification approach to biothreat detection, using multiple highly-discriminative amplicons per biothreat organism that provide redundancy in case of variation in some primer regions. Importantly, strain level discrimination was possible at levels of 10 genome equivalents. Similar results could be obtained through use of panels focused on the identification of amplicons targeted for specific genes or SNPs instead of, or in addition to, those targeted for specific organisms (ongoing gene-targeting work to be reported later). Note that without some form of targeted enhancement, the enormous background present in complex clinical and environmental samples makes it highly unlikely that sufficient coverage of key pathogen(s) present in the sample will be achieved with current NGS technology to guarantee that the most highly discriminating regions will be sequenced.


Assuntos
Biblioteca Gênica , Genoma Bacteriano/genética , Genoma Humano/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência de DNA/métodos , Humanos
4.
Genome Res ; 25(7): 1056-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926546

RESUMO

Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.


Assuntos
Genoma Microbiano , Metagenoma , Metagenômica/métodos , Microbiota , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Humanos , Curva ROC
5.
BMC Genomics ; 14: 96, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23402258

RESUMO

BACKGROUND: High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. RESULTS: We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). CONCLUSIONS: Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Vírus/genética , Benchmarking , Genoma Viral/genética , Reação em Cadeia da Polimerase
6.
BMC Genomics ; 11: 668, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21108826

RESUMO

BACKGROUND: Identifying the bacteria and viruses present in a complex sample is useful in disease diagnostics, product safety, environmental characterization, and research. Array-based methods have proven utility to detect in a single assay at a reasonable cost any microbe from the thousands that have been sequenced. METHODS: We designed a pan-Microbial Detection Array (MDA) to detect all known viruses (including phages), bacteria and plasmids and developed a novel statistical analysis method to identify mixtures of organisms from complex samples hybridized to the array. The array has broader coverage of bacterial and viral targets and is based on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the literature. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments, and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species with homology to sequenced organisms, and to have no significant matches to the human genome sequence. RESULTS: In blinded testing on spiked samples with single or multiple viruses, the MDA was able to correctly identify species or strains. In clinical fecal, serum, and respiratory samples, the MDA was able to detect and characterize multiple viruses, phage, and bacteria in a sample to the family and species level, as confirmed by PCR. CONCLUSIONS: The MDA can be used to identify the suite of viruses and bacteria present in complex samples.


Assuntos
Bactérias/isolamento & purificação , Análise em Microsséries/métodos , Vírus/isolamento & purificação , Algoritmos , Animais , Bactérias/genética , Bovinos , Sondas de DNA/metabolismo , Entropia , Fezes/microbiologia , Fezes/virologia , Humanos , Funções Verossimilhança , Hibridização de Ácido Nucleico , Escarro/microbiologia , Escarro/virologia , Vírus/genética
7.
BMC Microbiol ; 9: 77, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386124

RESUMO

BACKGROUND: Finding the amino acid mutations that affect the severity of influenza infections remains an open and challenging problem. Of special interest is better understanding how current circulating influenza strains could evolve into a new pandemic strain. Influenza proteomes from distinct viral phenotype classes were searched for class specific amino acid mutations conserved in past pandemics, using reverse engineered linear classifiers. RESULTS: Thirty-four amino acid markers associated with host specificity and high mortality rate were found. Some markers had little impact on distinguishing the functional classes by themselves, however in combination with other mutations they improved class prediction. Pairwise combinations of influenza genomes were checked for reassortment and mutation events needed to acquire the pandemic conserved markers. Evolutionary pathways involving H1N1 human and swine strains mixed with avian strains show the potential to acquire the pandemic markers with a double reassortment and one or two amino acid mutations. CONCLUSION: The small mutation combinations found at multiple protein positions associated with viral phenotype indicate that surveillance tools could monitor genetic variation beyond single point mutations to track influenza strains. Finding that certain strain combinations have the potential to acquire pandemic conserved markers through a limited number of reassortment and mutation events illustrates the potential for reassortment and mutation events to lead to new circulating influenza strains.


Assuntos
Evolução Molecular , Marcadores Genéticos , Genoma Viral , Virus da Influenza A Subtipo H5N1/genética , Proteômica , Sequência de Aminoácidos , Animais , Aves/virologia , Sequência Conservada , Surtos de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Mutação , Vírus Reordenados/genética , Alinhamento de Sequência , Especificidade da Espécie , Suínos , Proteínas Virais/genética
8.
Genome Biol ; 9(3): R56, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18348716

RESUMO

Using newly designed computational tools we show that, despite substantial shared sequences between natural plasmids and artificial vector sequences, a robust set of DNA oligomers can be identified that can differentiate artificial vector sequences from all available background viral and bacterial genomes and natural plasmids. We predict that these tools can achieve very high sensitivity and specificity rates for detecting new unsequenced vectors in microarray-based bioassays. Such DNA signatures could be important in detecting genetically engineered bacteria in environmental samples.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Engenharia Genética , Vetores Genéticos/genética , Análise de Sequência de DNA/métodos , Sequência Conservada , Plasmídeos/genética
9.
PLoS Med ; 3(5): e149, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16605302

RESUMO

BACKGROUND: The emergence of severe acute respiratory syndrome (SARS) in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV) infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs) infected with SARS-CoV. METHODS AND FINDINGS: In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain. CONCLUSIONS: SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis/virologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Formação de Anticorpos , Pré-Escolar , Feminino , Humanos , Masculino , Mucosa/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Índice de Gravidade de Doença , Síndrome , Vacinas , Replicação Viral
10.
Nucleic Acids Res ; 33(18): 5838-50, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16243783

RESUMO

Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10(-3)-10(-5) (approximately 8x coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of approximately 1% (3x to 6x coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures.


Assuntos
Genoma Bacteriano , Genoma Viral , Genômica/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Biologia Computacional , Marburgvirus/genética , Marburgvirus/isolamento & purificação , Filogenia , Alinhamento de Sequência , Software , Vírus da Varíola/genética , Vírus da Varíola/isolamento & purificação , Proteínas Virais/química
11.
J Clin Microbiol ; 43(4): 1807-17, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15815002

RESUMO

Computational analyses of genome sequences may elucidate protein signatures unique to a target pathogen. We constructed a Protein Signature Pipeline to guide the selection of short peptide sequences to serve as targets for detection and therapeutics. In silico identification of good target peptides that are conserved among strains and unique compared to other species generates a list of peptides. These peptides may be developed in the laboratory as targets of antibody, peptide, and ligand binding for detection assays and therapeutics or as targets for vaccine development. In this paper, we assess how the amount of sequence data affects our ability to identify conserved, unique protein signature candidates. To determine the amount of sequence data required to select good protein signature candidates, we have built a computationally intensive system called the Sequencing Analysis Pipeline (SAP). The SAP performs thousands of Monte Carlo simulations, each calling the Protein Signature Pipeline, to assess how the amount of sequence data for a target organism affects the ability to predict peptide signature candidates. Viral species differ substantially in the number of genomes required to predict protein signature targets. Patterns do not appear based on genome structure. There are more protein than DNA signatures due to greater intraspecific conservation at the protein than at the nucleotide level. We conclude that it is necessary to use the SAP as a dynamic system to assess the need for continued sequencing for each species individually and to update predictions with each additional genome that is sequenced.


Assuntos
Sequência de Bases , Vírus de DNA/classificação , Genoma Viral , Vírus de RNA/classificação , Proteínas Virais/química , Viroses/diagnóstico , Biologia Computacional/métodos , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Humanos , Método de Monte Carlo , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Análise de Sequência de DNA , Proteínas Virais/genética , Viroses/tratamento farmacológico , Viroses/virologia
12.
J Clin Microbiol ; 42(12): 5472-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583268

RESUMO

We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (near neighbors) that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near-neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near-neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. Severe acute respiratory syndrome and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near-neighbor sequences are urgently needed. Our results also indicate that double-stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.


Assuntos
Sequência de Bases , Vírus de DNA/classificação , Genoma Viral , Vírus de RNA/classificação , Viroses/diagnóstico , Vírus de DNA/genética , Humanos , Método de Monte Carlo , Vírus de RNA/genética , Especificidade da Espécie , Viroses/virologia
13.
J Clin Microbiol ; 41(6): 2417-27, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791858

RESUMO

Recent events illustrate the imperative to rapidly and accurately detect and identify pathogens during disease outbreaks, whether they are natural or engineered. Particularly for our primary goal of detecting bioterrorist releases, detection techniques must be both species-wide (capable of detecting all known strains of a given species) and species specific. Due to classification restrictions on the publication of data for species that may pose a bioterror threat, we illustrate the challenges of finding such assays using five nonthreat organisms that are nevertheless of public health concern: human immunodeficiency virus (HIV) and four species of hepatitis viruses. Fluorogenic probe-based PCR assays (TaqMan; Perkin-Elmer Corp., Applied Biosystems, Foster City, Calif.) may be sensitive, fast methods for the identification of species in which the genome is conserved among strains, such as hepatitis A virus. For species such as HIV, however, the strains are highly divergent. We use computational methods to show that nine TaqMan primer and probe sequences, or signatures, are needed to ensure that all strains will be detected, but this is an unfeasible number, considering the cost of TaqMan probes. Strains of hepatitis B, C, and E viruses show intermediate divergence, so that two to three TaqMan signatures are required to detect all strains of each virus. We conclude that for species such as hepatitis A virus with high levels of sequence conservation among strains, signatures can be found computationally for detection by the TaqMan assay, which is a sensitive, rapid, and cost-effective method. However, for species such as HIV with substantial genetic divergence among strains, the TaqMan assay becomes unfeasible and alternative detection methods may be required. We compare the TaqMan assay with some of the alternative nucleic acid-based detection techniques of microarray, chip, and bead technologies in terms of sensitivity, speed, and cost.


Assuntos
Infecções por HIV/virologia , HIV-1/classificação , Vírus de Hepatite/classificação , Hepatite Viral Humana/virologia , Reação em Cadeia da Polimerase/métodos , Taq Polimerase/metabolismo , Biologia Computacional , Primers do DNA , HIV-1/genética , HIV-1/isolamento & purificação , Vírus de Hepatite/genética , Vírus de Hepatite/isolamento & purificação , Humanos , Filogenia , Reação em Cadeia da Polimerase/economia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...