Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 350: 123976, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657893

RESUMO

The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Fungos , Portugal , Humanos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Micotoxinas/análise , Poeira/análise , Células Hep G2 , Células A549 , Bactérias/isolamento & purificação
2.
Front Public Health ; 12: 1338435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510349

RESUMO

Introduction: Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods: This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results: Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 µg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion: This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.


Assuntos
Poluentes Ambientais , Bombeiros , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Feminino , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pressão Sanguínea , Estudos Transversais , Biomarcadores , Estilo de Vida
3.
Sci Total Environ ; 926: 171801, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508274

RESUMO

Human biomonitoring data retrieved from real-life wildland firefighting in Europe and, also, worldwide are scarce. Thus, in this study, 176 Portuguese firefighters were biomonitored pre- and post- unsimulated wildfire combating (average:12-13 h; maximum: 55 h) to evaluate the impact on the levels of urinary polycyclic aromatic hydrocarbons hydroxylated metabolites (OHPAH; quantified by high-performance liquid chromatography with fluorescence detection) and the associated short-term health effects (symptoms, and total and differentiated white blood cells). Correlations between these variables and data retrieved from the self-reported questionnaires were also investigated. Firefighters were organized into four groups according to their exposure to wildfire emissions and their smoking habits: non-smoking non-exposed (NSNExp), non-smoking exposed (NSExp), smoking non-exposed (SNExp), and smoking and exposed (SExp). The most abundant metabolites were 1-hydroxynaphthalene and 1-hydroxyacenaphthene (1OHNaph + 1OHAce) (98-99 %), followed by 2-hydroxyfluorene (2OHFlu) (0.2-1.1 %), 1-hydroxyphenanthrene (1OHPhen) (0.2-0.4 %), and 1-hydroxypyrene (1OHPy) (0.1-0.2 %); urinary 3-hydroxybenzo(a)pyrene was not detected. The exposure to wildfire emissions significantly elevated the median concentrations of each individual and total OHPAH compounds in all groups, but this effect was more pronounced in non-smoking (1.7-4.2 times; p ≤ 0.006) than in smoking firefighters (1.3-1.6 times; p ≤ 0.03). The greatest discriminant of exposure to wildfire emissions was 1OHNaph + 1OHAce (increase of 4.2 times), while for tobacco smoke it was 2OHFlu (increase of 10 times). Post-exposure, white blood cells count significantly increased ranging from 1.4 (smokers, p = 0.025) to 3.7-fold (non-smokers, p < 0.001), which was accompanied by stronger significant correlations (0.480 < r < 0.882; p < 0.04) between individual and total OHPAH and total white blood cells (and lymphocytes > monocytes > neutrophils in non-smokers), evidencing the impact of PAH released from wildfire on immune cells. This study identifies Portuguese firefighters with high levels of biomarkers of exposure to PAH and points out the importance of adopting biomonitoring schemes, that include multiple biomarkers of exposure and biomarkers of effect, and implementing mitigations strategies.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Biomarcadores/análise
4.
Toxics ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535934

RESUMO

The characterization of wildland firefighters' occupational exposure must consider different exposures, including those at the fire station. The present study aimed to characterize the occupational exposure of 172 Northern Portuguese wildland firefighters in fire stations during the pre-wildfire season of 2021. The biological impact of estimated inhaled doses of PM10 and PM2.5 (indoor/outdoor) was accessed through a buccal micronucleus cytome (BMCyt) assay in exfoliated buccal cells of a subgroup of 80 firefighters. No significant association was found between estimated inhaled doses of PM10 and PM2.5 (mean 1.73 ± 0.43 µg kg-1 and 0.53 ± 0.21 µg kg-1, respectively) and biological endpoints. However, increased frequencies of cell death parameters were found among subjects of the Permanent Intervention Teams (full-time firefighters). The intake of nutritional supplements was associated with a significant decrease in micronucleus frequencies (i.e., DNA damage or chromosome breakage). In addition, our findings showed a significantly increased frequency of cell death endpoints (i.e., nuclear fragmentation) with coffee consumption, while daily consumption of vegetables significantly decreased it (i.e., nuclear shrinkage). Our results provide data on the occupational exposure of wildland firefighters while working in fire stations during the pre-wildfire season, providing the essential baseline for further studies throughout the wildfire season.

5.
Front Public Health ; 11: 1310215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089025

RESUMO

Introduction: Exercising on regular basis provides countless health benefits. To ensure the health, well-being and performance of athletes, optimal indoor air quality, regular maintenance and ventilation in sport facilities are essential. Methods: This study assessed the levels of particulate, down to the ultrafine range (PM10, PM2.5, and particle number concentration in size range of 20-1,000 nm, i.e., - PNC20-1000 nm), gaseous pollutants (total volatile organic compounds - TVOCs, CO2, and O3) and comfort parameters (temperature - T, relative humidity - RH) in different functional spaces of health clubs (n = 8), under specific occupancy and ventilation restrictions. Results and Discussion: In all HCs human occupancy resulted in elevated particles (up to 2-3 times than those previously reported), considering mass concentrations (PM10: 1.9-988.5 µg/m3 PM2.5: 1.6-479.3 µg/m3) and number (PNC 1.23 × 103 - 9.14 × 104 #/cm3). Coarse and fine PM indicated a common origin (rs = 0.888-0.909), while PNC showed low-moderate associations with particle mass (rs = 0.264-0.629). In addition, up to twice-higher PM and PNC were detected in cardiofitness & bodybuilding (C&B) areas as these spaces were the most frequented, reinforcing the impacts of occupational activities. In all HCs, TVOCs (0.01-39.67 mg/m3) highly exceeded the existent protection thresholds (1.6-8.9 times) due to the frequent use of cleaning products and disinfectants (2-28 times higher than in previous works). On contrary to PM and PNC, TVOCs were higher (1.1-4.2 times) in studios than in C&B areas, due to the limited ventilations combined with the smaller room areas/volumes. The occupancy restrictions also led to reduced CO2 (122-6,914 mg/m3) than previously observed, with the lowest values in HCs with natural airing. Finally, the specific recommendations for RH and T in sport facilities were largely unmet thus emphasizing the need of proper ventilation procedures in these spaces.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Academias de Ginástica , Humanos , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Poluentes Atmosféricos/análise , Gases , Dióxido de Carbono , Monitoramento Ambiental
6.
Sci Rep ; 11(1): 21336, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716393

RESUMO

Air quality improvements pollution changes due to COVID-19 restrictions have been reported for many urban developments and large metropolitan areas, but the respective impacts at rural and remote zones are less frequently analysed. This study evaluated air pollution changes across all Portugal (68 stations) considering all urban, suburban and rural zones. PM10, PM2.5, NO2, SO2, ozone was analysed in pre-, during, and post-lockdown period (January-May 2020) and for a comparison also in 2019. NO2 was the most reduced pollutant in 2020, which coincided with decreased traffic. Significant drop (15-71%) of traffic related NO2 was observed specifically during lockdown period, being 55% for the largest and most populated region in country. PM was affected to a lesser degree (with substantial differences found for largely populated areas (Lisbon region ~ 30%; North region, up to 49%); during lockdown traffic-related PM dropped 10-70%. PM10 daily limit was exceeded 50% less in 2020, with 80% of exceedances before lockdown period. SO2 decreased by 35%, due to suspended industrial productions, whereas ozone concentrations slightly (though not significantly) increased (83 vs. 80 µg m-3).


Assuntos
Poluição do Ar/análise , COVID-19/prevenção & controle , Quarentena/métodos , População Rural , SARS-CoV-2 , População Suburbana , População Urbana , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , COVID-19/virologia , Monitoramento Ambiental/métodos , Humanos , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Portugal/epidemiologia , Dióxido de Enxofre/análise
7.
Environ Pollut ; 264: 114746, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417580

RESUMO

Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM10, PM2.5) and number (N20-1000) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM10, PM2.5, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM2.5 (mean = 53 µg m-3) exceeded limit of 25 µg m-3, for PM10 (mean = 57 µg m-3) 41% of homes demonstrated average levels higher than 50 µg m-3, thus indicating potential risks. Indoor PM10 was mostly (82-99%) composed of PM2.5, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 103 # cm-3) were higher than outdoors (mean = 10.0 × 103 # cm-3). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Mães , Tamanho da Partícula , Material Particulado/análise , Portugal
8.
Sci Total Environ ; 717: 137293, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092813

RESUMO

Accurate assessment of particulate matter (PM) dose and respiratory deposition is essential to better understand the risks of exposure to PM and, consequently, to develop the respective risk-control strategies. In homes, this is especially relevant in regards to ultrafine particles (UFP; <0.1 µm) which origin in these environments is mostly due to indoor sources. Thus, this study aimed to estimate inhalation doses for different PM mass/number size fractions (i.e., PM10, PM2.5 and UFP) in indoor air of residential homes and to quantify the deposition (total, regional and lobar) in human respiratory tract for both newborn children and mothers. Indoor real-time measurements of PM10, PM2.5 and UFP were conducted in 65 residential homes situated in Oporto metropolitan area (Portugal). Inhalation doses were estimated based on the physical characteristics of individual subjects and their activity patterns. The multi-path particle dosimetry model was used to quantify age-specific depositions in human respiratory tract. The results showed that 3-month old infants exhibited 4-fold higher inhalation doses than their mothers. PM10 were primarily deposited in the head region (87%), while PM2.5 and UFP depositions mainly occurred in the pulmonary area (39% and 43%, respectively). Subject age affected the pulmonary region and the total lung deposition; higher deposition being observed among the newborns. Similarly, lower lobes (left lobe: 37% and right lobe: 30%) received higher PM deposition than upper and middle lobes; right lobes lung are prone to be more susceptible to respiratory problems, since asymmetric deposition was observed. Considering that PM-related diseases occur at specific sites of respiratory system, quantification of site-specific particle deposition should be predicted in order to better evidence the respective health outcomes resulting from inhaled PM.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Exposição por Inalação , Mães , Tamanho da Partícula , Material Particulado , Portugal
9.
J Hazard Mater ; 383: 121179, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31522064

RESUMO

Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight firehouses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p ≤ 0.05) in (non-smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene (82-88% of ∑OHPAHs), and for 2-hydroxyfluorene (5-15%). Levels of biomarker for oxidative stress were increased in non-smoking exposed workers than in control group (316%; p ≤ 0.001); inconclusive results were found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding the simultaneous use of these biomarkers for the surveillance of firefighters' health and to better estimate the potential short-term health risks.


Assuntos
Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Biomarcadores , Dano ao DNA , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
10.
Environ Pollut ; 258: 113648, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31806467

RESUMO

Conducting aerobic activity on regular basis is recognised as one of the steps to maintain healthier lifestyle. The positive outcomes though can be outweighed if conducted in polluted atmosphere. Furthermore, the specific inhalation during exercising, which results in bypass of nasal filtration systems and deeper penetration into the respiratory system, might result in higher risks especially to pollutants such as ultrafine particles (UFP), which aerodynamic particle diameter are <100 nm. Thus, this work aims to evaluate UFP levels at sites used for conducting physical sport activities outdoors and to estimate the respective inhalation doses considering various scenarios and different physical activities. Monitoring of UFP was conducted during three weeks (May-June 2015) at four different sites (S1-S4) regularly used to conduct physical exercising. The results showed that UFP highly varied (medians 5.1-20.0 × 103 # cm-3) across the four sites, with the highest UFP obtained when exercising next to trafficked streets whereas S3 and S4 (a garden and city park) exhibited 2-4 times lower UFP. In view of the obtained UFP concentrations, the estimated inhalation doses ranged 1.73 × 108-3.81 × 108 # kg-1 when conducting moderately intense sport activities and 1.93 × 108-5.95 × 108 # kg-1 for highly intense ones. Highly intense activities (i.e. running) led to twice higher UFP exposure; children and youths (5-17 yrs old) experienced 203-267% higher doses. Considering the age- and gender- differences, estimated UFP doses of males were 1.1-2.8 times higher than of females. Finally, UFP inhalation doses estimated for walking (commuting to work and/or schools) were 1.6-7.5 times lower than when conducting sport activities. Thus to protect public health and to promote healthy and physically active lifestyle, strategies to minimize the negative impacts of air pollution should be developed and implemented.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Esportes , Adolescente , Criança , Cidades , Exposição Ambiental , Feminino , Humanos , Exposição por Inalação , Masculino , Portugal
11.
J Toxicol Environ Health A ; 82(9): 591-602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31288676

RESUMO

Although regular exercise improves overall well-being, increased physical activity results in enhanced breathing which consequently leads to elevated exposure to a variety of air pollutants producing adverse effects. It is well-known that one of these ambient air contaminants is ultrafine particles (UFP). Thus, this study aimed to (1) examine exposure to particle number concentrations (PNC) in size ranging from N20-1000 nm in different sport environments and (2) estimate the respective inhalation doses across varying activity scenarios based upon the World Health Organization recommendations for physical activity. PNC were continuously monitored (TSI P-Trak™ condensation particle counter) outdoors (Out1-Out2) and indoors (Ind1-Ind2; fitness clubs) over 4 weeks. Outdoor PNC (total median 12 563 # cm-3; means of 20 367 # cm-3 at Out1 and 7 122 # cm-3 at Out2) were approximately 1.6-fold higher than indoors (total median 7 653 # cm-3; means of 11 861 # cm-3 at Ind1 and 14 200 # cm-3 at Ind2). The lowest doses were inhaled during holistic group classes (7.91 × 107-1.87 × 108 # per kg body weight) whereas exercising with mixed cardio and strength training led to approximately 1.8-fold higher levels. In order to optimize the health benefit of exercises, environmental characteristics of the locations at which physical activities are conducted need to be considered.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Exercício Físico , Exposição por Inalação/análise , Material Particulado/análise , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Portugal , Esportes/classificação , Adulto Jovem
12.
Environ Pollut ; 246: 885-895, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31159138

RESUMO

Due to the negative health impacts, significant efforts have been directed towards investigating ultrafine particle (UFP) exposure in various indoor environments. As children spend approximately one third of their time in schools, educatory environments deserve particular attention; however, majority of past research has focused on UFP assessment in classrooms. Thus, this work aims to expand the characterization of UFP in primary schools by considering different indoor and outdoor school microenvironments and estimating inhalation doses for the respective students (6-11yrs old). Real-time UFP measurements were daily conducted (9:00-17:30) in 20 primary schools in Oporto (January-April 2014; October-February 2015) in classrooms, canteens, gyms, libraries, and concurrently outdoors. Overall, UFP concentrations showed large temporal and spatial variations. For classrooms (n = 73), median UFP (1.56 × 103-16.8 × 103 # cm-3) were lower than the corresponding levels in ambient air of schools (1.79 × 103-24.1 × 103 # cm-3). Outdoor emissions contributed to indoor UFP (indoor-to-outdoor ratios I/O of 0.0.30-0.85), but ventilation, room characteristics and its occupancy were identified as important parameters contributing to overall indoor UFP levels. Considering specific indoor school microenvironments, canteens were the microenvironment with the highest UFP levels (5.47 × 103-36.4 × 103 # cm-3), cooking conducted directly on school grounds resulted in significantly elevated UFP in the respective classrooms (p < 0.05); the lowest UFP were found in libraries (4.45 × 103-8.50 × 103 # cm-3) mostly due to the limited occupancies. Although students spend majority of their school time in classrooms (66-71%), classroom exposure was not consistently the predominant contributor to school total UFP inhalation dose (29-75%). Outdoor exposure contributed 23-70% of school dose (depending on UFP levels in ambient levels and/or conducted activities) whereas short periods of lunch break accounted for 8-40%. Therefore, when evaluating UFP exposure in educatory settings other microenvironments beyond classrooms should be an integral part of the study.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Material Particulado/análise , Criança , Humanos , Tamanho da Partícula , Instituições Acadêmicas
13.
Environ Int ; 124: 180-204, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654326

RESUMO

Children, an important vulnerable group, spend most of their time at schools (up to 10 h per day, mostly indoors) and the respective air quality may significantly impact on children health. Thus, this work reviews the published studies on children biomonitoring and environmental exposure to particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at school microenvironments (indoors and outdoors), major sources and potential health risks. A total of 28, 35, and 31% of the studies reported levels that exceeded the international outdoor ambient air guidelines for PM10, PM2.5, and benzo(a)pyrene, respectively. Indoor and outdoor concentrations of PM10 at European schools, the most characterized continent, ranged between 7.5 and 229 µg/m3 and 21-166 µg/m3, respectively; levels of PM2.5 varied between 4 and 100 µg/m3 indoors and 6.1-115 µg/m3 outdoors. Despite scarce information in some geographical regions (America, Oceania and Africa), the collected data clearly show that Asian children are exposed to the highest concentrations of PM and PAHs at school environments, which were associated with increased carcinogenic risks and with the highest values of urinary total monohydroxyl PAH metabolites (PAH biomarkers of exposure). Additionally, children attending schools in polluted urban and industrial areas are exposed to higher levels of PM and PAHs with increased concentrations of urinary PAH metabolites in comparison with children from rural areas. Strong evidences demonstrated associations between environmental exposure to PM and PAHs with several health outcomes, including increased risk of asthma, pulmonary infections, skin diseases, and allergies. Nevertheless, there is a scientific gap on studies that include the characterization of PM fine fraction and the levels of PAHs in the total air (particulate and gas phases) of indoor and outdoor air of school environments and the associated risks for the health of children. There is a clear need to improve indoor air quality in schools and to establish international guidelines for exposure limits in these environments.


Assuntos
Poluentes Atmosféricos/análise , Saúde da Criança , Exposição Ambiental , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Instituições Acadêmicas , Poluição do Ar , Poluição do Ar em Ambientes Fechados/análise , Benzo(a)pireno/análise , Carcinógenos/análise , Criança , Carvão Mineral , Exposição Ambiental/análise , Humanos
14.
J Hazard Mater ; 359: 56-66, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30014915

RESUMO

Associations between indoor air quality (IAQ) and health in sport practise environments are not well understood due to limited knowledge of magnitude of inhaled pollutants. Thus, this study assessed IAQ in four health clubs (HC1-HC4) and estimated inhaled doses during different types of activities. Gaseous (TVOCs, CO, O3, CO2) and particulate pollutants (PM1, PM4) were continuously collected during 40 days. IAQ was influenced both by human occupancy and the intensity of the performed exercises. Levels of all pollutants were higher when clubs were occupied (p < 0.05) than for vacant periods, with higher medians in main workout areas rather than in spaces/studios for group activities. In all spaces, TVOCs highly exceeded legislative limit (600 µg/m3), even when unoccupied, indicating possible risks for the respective occupants. CO2 levels were well correlated with relative humidity (rs 0.534-0.625) and occupancy due to human exhalation and perspiration during exercising. Clubs with natural ventilations exhibited twice higher PM, with PM1 accounting for 93-96% of PM4; both PM were highly correlated (rs 0.936-0.995) and originated from the same sources. Finally, cardio classes resulted in higher inhalation doses than other types of exercising (1.7-2.6).


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Academias de Ginástica , Exposição por Inalação/análise , Adulto , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ozônio/análise , Material Particulado/análise , Ventilação , Compostos Orgânicos Voláteis/análise , Adulto Jovem
15.
Environ Pollut ; 233: 180-193, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29073525

RESUMO

Fitness centres (FC) represent a unique indoor microenvironment. Exercising on regular basis provides countless health benefits and improves overall well-being, but if these facilities have poor indoor air quality, the respective exercisers might be subjected to some adverse risks. Considering the limited existent data, this work aimed to evaluate particulate pollution (PM10, PM2.5, and ultrafine particles - UFP) in indoor air of FC and to estimate the respective risks for occupants (both staff and exercising subjects). Sampling was conducted during 40 consecutive days of May-June 2014 in general fitness areas, studios and classrooms (for group activities) of four different fitness centres (FC1-FC4) situated within Oporto metropolitan area, Portugal. The results showed that across the four FC, PM10 ranged between 5 and 1080 µg m-3 with median concentrations (15-43 µg m-3) fulfilling the limit (50 µg m-3) of Portuguese legislation in all FC. PM2.5 (medians 5-37 µg m-3; range 5-777 µg m-3) exceeded thresholds of 25 µg m-3 at some FC, indicating potential risks for the respective occupants; naturally ventilated FC exhibited significantly higher PM ranges (p < 0.05). Similarly, UFPs (range 0.5-88.6 × 103 # cm-3) median concentrations were higher (2-3 times) at FC without controlled ventilation systems. UFP were approximately twice higher (p < 0.05) during the occupied periods (mean of 9.7 × 103vs. 4.8 × 103 # cm-3) with larger temporal variations of UFP levels observed in general fitness areas than in classrooms and studios. Cardio activities (conducted in studios and classrooms) led to approximately twice the UFPs intakes than other types of exercising. These results indicate that even short-term physical activity (or more specifically its intensity) might strongly influence the daily inhalation dose. Finally, women exhibited 1.2 times higher UFPs intake than men thus suggesting the need for future gender-specific studies assessing UFP exposure.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Academias de Ginástica/estatística & dados numéricos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Poeira , Humanos , Tamanho da Partícula , Portugal , Instituições Acadêmicas
16.
J Toxicol Environ Health A ; 80(13-15): 630-640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28679081

RESUMO

The aim of this study was to determine levels and risks due to inhalation exposure to polycyclic aromatic hydrocarbons (PAH) in different educational settings, namely for 3- to 5- year-old and 6- to 10-year-old children. Eighteen PAH (16 priority designated by US Environmental Protection Agency (USEPA) and dibenzo[a,l]pyrene and benzo[j]fluoranthene) were simultaneously collected in indoor and outdoor air at two Portuguese preschools (PS1-PS2) and five elementary schools (ES1-ES5) from March to May 2014. Indoor concentrations at PS and ES were significantly different, with total levels (∑PAHs) 0.721-15.9 ng/m3 at PS1-PS2 and 5.03-23.6 ng/m3 at ES1-ES5. The corresponding outdoor concentrations were, respectively, 1.22-32.7 ng/m3 and 2.6-31.5 ng/m3. Polycyclic aromatic hydrocarbons with 2-3 aromatic rings were predominantly emitted by indoor sources, while compounds with 4-6 aromatic rings were mainly generated by infiltration of ambient PAH pollution to indoors. Excess lifetime risks of lung cancer exceeded the World Health Organization (WHO) designated guideline of 10-5 in both types of schools (15-42-fold at PS; 15-52-fold at ES). However, total (sum of indoor and outdoor exposure) incremental lifetime cancer risks (ILCR) were below the USEPA level of 10-6 at all studied institutions and thus considered negligible. Finally, ILCR due to indoor exposure represented 60-75% and 70-85% of the total ILCR at PS and ES, respectively, thus indicating the need for development and implementation of indoor air quality guidelines in educations settings.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Instituições Acadêmicas/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Criança , Pré-Escolar , Humanos , Exposição por Inalação/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Portugal , Medição de Risco
17.
J Toxicol Environ Health A ; 80(13-15): 740-755, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28569620

RESUMO

Indoor air quality at schools (elementary, primary) has been the subject of many studies; however, there are still relative few data regarding preschool (3- to 5-year-old children) environments. This investigation determined the concentrations of particulate matter (PM)2.5, total volatile organic compounds (TVOC), formaldehyde, carbon monoxide (CO), and ozone (O3) as well as the levels of carbon dioxide (CO2), temperature, and relative humidity (RH) in the indoor and outdoor air of two preschools situated in different geographical regions of Portugal. The indoor concentrations of TVOC, CO, O3, and CO2 were predominantly higher at the end of school day compared to early morning periods. The TVOC and CO2 concentrations were higher indoors than outdoors suggesting predominantly an indoor origin. Outdoor air infiltrations were the major contributing source of CO and O3 to indoor air in both preschools. The concentrations of all pollutants were within the limits defined by national regulations and international organizations, except for TVOC that exceeded 8-12-fold higher than the recommendation of 0.2 mg/m3 proposed by European Commission. The levels of CO2 were below the protective guideline of 2250 mg/m3 (Portuguese legislation); however, the observed ranges exceeded the Portuguese margin of tolerance (2925 mg/m3) at the end of school days, indicating the impact of occupancy rates particularly at one of the preschools. Regarding comfort parameters, temperature exerted a significant influence on O3 concentrations, while RH values were significantly correlated with TVOC levels in indoor air of preschools, particularly during the late afternoon periods.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Instituições Acadêmicas/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Dióxido de Carbono/efeitos adversos , Dióxido de Carbono/análise , Monóxido de Carbono/efeitos adversos , Monóxido de Carbono/análise , Pré-Escolar , Formaldeído/efeitos adversos , Formaldeído/análise , Humanos , Umidade , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Portugal/epidemiologia , Instituições Acadêmicas/normas , Estações do Ano , Temperatura , Compostos Orgânicos Voláteis/efeitos adversos , Compostos Orgânicos Voláteis/análise
18.
J Hazard Mater ; 334: 10-20, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28380396

RESUMO

There is limited information about wildland firefighters' exposure to polycyclic aromatic hydrocarbons (PAHs), being scarce studies that included the impact of tobacco consumption. Thus, this work evaluated the individual and cumulative impacts of firefighting activities and smoking on wildland firefighters' total exposure to PAHs. Six urinary PAH metabolites (1-hydroxynaphthalene (1OHNaph), 1-hydroxyacenaphthene (1OHAce), 2-hydroxyfluorene (2OHFlu), 1-hydroxyphenanthrene (1OHPhen), 1-hydroxypyrene (1OHPy), and 3-hydroxybenzo[a]pyrene (3OHB[a]P)) were quantified by high-performance liquid chromatography with fluorescence detection. Firefighters from three fire stations were characterized and organized in three groups: non-smoking and non-exposed to fire emissions (NSNExp), smoking non-exposed (SNExp), and smoking exposed (SExp) individuals. 1OHNaph+1OHAce were the most predominant OH-PAHs (66-91% ∑OH-PAHs), followed by 2OHFlu (2.8-28%), 1OHPhen (1.3-7%), and 1OHPy (1.4-6%). 3OHB[a]P, the carcinogenicity PAH biomarker, was not detected. Regular consumption of tobacco increased 76-412% ∑OH-PAHs. Fire combat activities promoted significant increments of 158-551% ∑OH-PAHs. 2OHFlu was the most affected compound by firefighting activities (111-1068%), while 1OHNaph+1OHAce presented the more pronounced increments due to tobacco consumption (22-339%); 1OHPhen (76-176%) and 1OHPy (20-220%) were the least influenced ones. OH-PAH levels of SExp firefighters were significantly higher than in other groups, suggesting that these subjects may be more vulnerable to develop and/or aggravate diseases related with PAHs exposure.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros , Incêndios , Nicotiana , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumar , Adulto , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Humanos , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/urina , Espectrometria de Fluorescência , Adulto Jovem
19.
Sci Total Environ ; 592: 277-287, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319714

RESUMO

This work aims to characterize personal exposure of firefighters to polycyclic aromatic hydrocarbons (PAHs) in non-fire work environments (fire stations), and assesses the respective risks. Eighteen PAHs (16 considered by USEPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were monitored in breathing zones of workers at five Portuguese fire stations during a normal shift. The obtained levels of PAHs fulfilled all existent occupational exposure limits as well as air quality guidelines with total concentrations (ΣPAHs) in range of 46.8-155ngm-3. Light compounds (2-3 rings) were the most predominant congeners (74-96% of ΣPAHs) whereas PAHs with 5-6 rings accounted 3-9% of ΣPAHs. Fuel and biomass combustions, vehicular traffic emissions, and use of lubricant oils were identified as the main sources of PAHs exposure at the studied fire corporations. Incremental lifetime cancer risks were below the recommend USEPA guideline of 10-6 and thus negligible for all the studied subjects, but WHO health-based guideline level of 10-5 was exceeded (9-44 times) at all fire corporations. These results thus show that even during non-fire situations firefighters are exposed to PAHs at levels that may promote some adverse health outcomes; therefore the respective occupational exposures to these compounds should be carefully controlled.


Assuntos
Poluição do Ar/análise , Bombeiros , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Estados Unidos , United States Environmental Protection Agency
20.
J Hazard Mater ; 323(Pt A): 184-194, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26997333

RESUMO

This work characterizes levels of eighteen polycyclic aromatic hydrocarbons (PAHs) in the breathing air zone of firefighters during their regular work shift at eight Portuguese fire stations, and the firefighters' total internal dose by six urinary monohydroxyl metabolites (OH-PAHs). Total PAHs (ΣPAHs) concentrations varied widely (46.4-428ng/m3), mainly due to site specificity (urban/rural) and characteristics (age and layout) of buildings. Airborne PAHs with 2-3 rings were the most abundant (63.9-95.7% ΣPAHs). Similarly, urinary 1-hydroxynaphthalene and 1-hydroxyacenaphthene were the predominant metabolites (66-96% ΣOH-PAHs). Naphthalene contributed the most to carcinogenic ΣPAHs (39.4-78.1%) in majority of firehouses; benzo[a]pyrene, the marker of carcinogenic PAHs, accounted with 1.5-10%. Statistically positive significant correlations (r≥0.733, p≤0.025) were observed between ΣPAHs and urinary ΣOH-PAHs for firefighters of four fire stations suggesting that, at these sites, indoor air was their major exposure source of PAHs. Firefighter's personal exposure to PAHs at Portuguese fire stations were well below the existent occupational exposure limits. Also, the quantified concentrations of post-shift urinary 1-hydroxypyrene in all firefighters were clearly lower than the benchmark level (0.5µmol/mol) recommended by the American Conference of Governmental Industrial Hygienists.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Bombeiros , Exposição por Inalação/análise , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Portugal , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...