Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zoology (Jena) ; 126: 164-171, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113765

RESUMO

Vertebral morphology, development, and evolution have been investigated for many decades, especially in the recent evo-devo era. Nevertheless, comparative data on development and ossification modes within the major tetrapod groups are scarce and frequently suffer from the use of a simplistic approach, resulting in simplistic generalizations about the formation of tetrapod vertebrae. Here, we describe the development and ossification of trunk vertebrae in Triturus ivanbureschi (Salamandridae, Caudata) and compare the results with published data on other related taxa. In so doing, we focus on the modes of ossification and development of the centrum and neural arches by analysing three developmental stages defined by the degree of limb development: stages 47, 52, and 62 according to Glücksohn (1932). Our examination of histological sections through trunk vertebrae enabled us to identify three modes of ossification within single trunk vertebrae: (i) perichordal (direct ossification of the connective tissue surrounding the notochord); (ii) perichondrial (direct ossification of the perichondrium, consisting of cartilage-covering connective tissue), and (iii) endochondral (ossification within the preformed cartilage template). We also noted the presence of intravertebral or notochordal cartilage. Although our results indicate that this cartilage develops within the notochord surrounded by the continuous notochordal sheath, more detailed further studies could shed light on its origin and development.


Assuntos
Osteogênese/fisiologia , Salamandridae/crescimento & desenvolvimento , Coluna Vertebral/crescimento & desenvolvimento , Animais , Salamandridae/anatomia & histologia , Coluna Vertebral/anatomia & histologia
2.
Zoology (Jena) ; 119(5): 439-446, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27267146

RESUMO

Body elongation in vertebrates is often related to a lengthening of the vertebrae and an increase in their number. Changes in the number and shape of vertebrae are not necessarily linked. In tailed amphibians, a change in body shape is mostly associated with an increase in the number of trunk and tail vertebrae. Body elongation without a numerical change of vertebrae is rare. In Triturus aquatic salamanders body elongation is achieved by trunk elongation through an increase in the number of trunk vertebrae. We used computed microtomography and three-dimensional geometric morphometrics to document the size, shape and number of trunk vertebrae in seven Triturus species. The data suggest that body elongation has occurred more frequently than body shortening, possibly related to a more aquatic versus a more terrestrial locomotor style. Our results show that body elongation is achieved through an increase in the number of trunk vertebrae, and that interspecific differences in vertebral shape are correlated with this pattern of elongation. More gracile trunk vertebrae were found in the more elongated species. The shape differences are such that single trunk vertebrae can be used for the identification of species with a possible application in the identification of subfossil and fossil material.


Assuntos
Coluna Vertebral/anatomia & histologia , Triturus/anatomia & histologia , Animais , Padronização Corporal , Tamanho Corporal , Filogenia , Triturus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...