Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 76(8): 2770-81, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21391617

RESUMO

Protonation of typical unstrained amides and lactams is heavily favored at oxygen. In contrast, protonation of the highly distorted lactam 1-azabicyclo[2.2.2]octan-2-one is heavily favored at nitrogen. What structures occupy "crossover boundaries" where N- and O-protonation are nearly equienergetic? Density function theory calculations at the B3LYP/6-31G* level, as well as QCISD(T)/6-31G* calculations, predict that 1-azabicyclo[3.3.1]nonan-2-one favors N-protonation at nitrogen only very slightly (<2.0 kcal/mol; "gas phase") over O-protonation. (1)H and (13)C NMR as well as ultraviolet (UV) studies of this lactam, in its combination with sulfuric acid, confirm predominant protonation at nitrogen. Although the calculations very slightly favor the N-protonated chair-chair conformation, experimental spectra clearly support the N-protonated boat-chair. Broadened resonances in the (13)C NMR spectrum suggest an exchange phenomenon. Variable-temperature studies of the (13)C NMR spectra support dynamic exchange between the major tautomer (N-protonated) and the minor tautomer (O-protonated) in a roughly 4:1 mixture. The findings also support the published prediction that a twisted bridgehead lactam with the nitrogen lone pair (n(N)) as HOMO will protonate at nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...