Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 122(1): 58-73, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29092894

RESUMO

RATIONALE: Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS: Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Preparação de Coração Isolado/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
2.
Mol Cell Biol ; 35(5): 831-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535334

RESUMO

Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity.


Assuntos
Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Coração/fisiologia , Hemodinâmica , Hipertrofia , Masculino , Camundongos , Células Musculares/citologia , Oxigênio/metabolismo , PPAR alfa/metabolismo , Proteômica , Transdução de Sinais , Transcrição Gênica , Transgenes
3.
J Mol Cell Cardiol ; 64: 20-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994159

RESUMO

It is believed that the diabetic myocardium is refractory to cardioprotection by ischemic preconditioning (IPC) mainly because of impaired insulin signaling to phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB or Akt). However, human as well as animal studies have clearly showed that the hearts of type 2 diabetic humans and animals may exhibit increased signaling through PI3K-Akt but yet are resistant to cardioprotection by IPC or ischemic post-conditioning. Therefore, this study was designed to determine whether activation of insulin signaling prior to IPC is detrimental for cardioprotection and to assess the role of insulin receptors (IRs) and Akt in mediating this effect. Wild-type (WT) hearts, hearts lacking IRs or hearts expressing an active form of Akt (myrAkt1) were perfused ex vivo using a Langendorff preparation and were subjected to IPC (3cycles of 5min ischemia followed by 5min reflow before 30min no flow ischemia and then by 45min reperfusion) in the presence or absence of 1nmol/L insulin. Interestingly, whereas insulin was protective against I/R (30min no flow ischemia and 45min reperfusion), it completely abolished cardioprotection by IPC in WT hearts but not in mice lacking insulin receptors (IRs) in cardiomyocytes (CIRKO) or in all cardiac cells (TIRKO). The suppression of IPC-mediated cardioprotection was mediated through downstream signaling to Akt and Gsk3ß. In addition, transgenic induction of Akt in the heart was sufficient to abrogate IPC even when insulin was absent, further confirming the involvement of Akt in insulin's suppression of cardioprotection by IPC. These data provide evidence that excessive insulin signaling to Akt is detrimental for cardioprotection by IPC and could explain the failure of the diabetic myocardium to precondition.


Assuntos
Insulina/metabolismo , Precondicionamento Isquêmico Miocárdico , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Glicogênio/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Insulina/farmacologia , Ácido Láctico/biossíntese , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais
4.
Am J Physiol Heart Circ Physiol ; 304(12): H1733-42, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23604708

RESUMO

Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P < 0.05). Phosphorylation of eNOSSer1177 increased (P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.


Assuntos
Pressão Sanguínea , Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Hipertensão/dietoterapia , Resistência à Insulina , Animais , Aorta/citologia , Aorta/fisiologia , Glicemia , Cardiomegalia/dietoterapia , Endotélio Vascular/metabolismo , Insulina/sangue , Artérias Mesentéricas/citologia , Artérias Mesentéricas/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ratos Endogâmicos SHR , Ratos Wistar , Vasodilatação
5.
Endocrinology ; 153(6): 2677-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22510273

RESUMO

This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias Musculares/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/metabolismo , Feminino , Insulina/sangue , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo , Triglicerídeos/metabolismo , Proteína Desacopladora 3
6.
Diabetes ; 60(5): 1424-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441440

RESUMO

OBJECTIVE: ob/ob and db/db mice manifest myocardial hypertrophy, insulin resistance, altered substrate utilization, mitochondrial dysfunction, and lipid accumulation. This study was designed to determine the contribution of central and peripheral leptin signaling to myocardial metabolism and function in ob/ob and db/db mice in the absence of diabetes and morbid obesity. RESEARCH DESIGN AND METHODS: Male ob/ob mice (aged 4 weeks) were caloric restricted by pairfeeding to a leptin-treated ob/ob group. In addition to determining glucose tolerance and circulating lipid concentrations, myocardial substrate metabolism and mitochondrial function were determined in saponin-permeabilized cardiac fibers. Second, experiments were performed to determine whether leptin treatment by intraperitoneal injection or intracerebroventricular infusion could normalize myocardial palmitate oxidation in caloric-restricted ob/ob mouse hearts. RESULTS: Despite normalizing body weight and glucose tolerance, fat mass and circulating lipid levels remained increased in caloric-restricted ob/ob animals. Palmitate oxidation remained elevated in caloric-restricted ob/ob hearts and was normalized by intraperitoneal or intracerebroventricular leptin. Intraperitoneal and intracerebroventricular treatment also normalized circulating free fatty acid levels, myocardial fatty acid oxidation gene expression, and myocardial insulin sensitivity. CONCLUSIONS: These data suggest that impaired hypothalamic leptin signaling is sufficient to increase myocardial fatty acid oxidation by increasing delivery of free fatty acid substrates and peroxisome proliferator-activated receptor-α ligands to the heart.


Assuntos
Restrição Calórica , Ácidos Graxos/metabolismo , Coração/efeitos dos fármacos , Leptina/sangue , Leptina/farmacologia , Miocárdio/metabolismo , Transdução de Sinais , Adiponectina/sangue , Animais , Composição Corporal/efeitos dos fármacos , Ácidos Graxos/sangue , Teste de Tolerância a Glucose , Injeções Intraperitoneais , Leptina/administração & dosagem , Masculino , Camundongos , Camundongos Obesos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Miocárdio/ultraestrutura , Oxirredução/efeitos dos fármacos , Ácidos Palmíticos/metabolismo , Reação em Cadeia da Polimerase , Triglicerídeos/sangue , Triglicerídeos/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 300(1): H374-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971769

RESUMO

Ablating insulin receptors in cardiomyocytes causes subendocardial fibrosis and left ventricular (LV) dysfunction after 4 wk of transverse aortic constriction (TAC). To determine whether these maladaptive responses are precipitated by coronary vascular dysfunction, we studied mice with cardiomyocyte-restricted knock out of insulin receptors (CIRKO) and wild-type (WT) TAC mice before the onset of overt LV dysfunction. Two weeks of TAC produced comparable increases (P < 0.05 vs. respective sham) in heart weight/body weight (mg/g) in WT-TAC (8.03 ± 1.14, P < 0.05 vs. respective sham) and CIRKO-TAC (7.76 ± 1.25, P < 0.05 vs. respective sham) vs. WT-sham (5.64 ± 0.11) and CIRKO-sham (4.64 ± 0.10) mice. In addition, 2 wk of TAC were associated with similar LV geometry and function (echocardiography) and interstitial fibrosis (picrosirius red staining) in CIRKO and WT mice. Responses to acetylcholine (ACh), N(G)-monomethyl-L-arginine (l-NMMA), and sodium nitroprusside (SNP) were measured in coronary arteries that were precontracted to achieve ∼70% of maximal tension development using the thromboxane A(2) receptor mimetic U-46619 (∼3 × 10(-6) M). ACh-evoked vasorelaxation was absent in WT-TAC but was present in CIRKO-TAC albeit reduced relative to sham-operated animals. l-NMMA-evoked tension development was similar in vessels from CIRKO-TAC mice but was lower (P < 0.05) in WT-TAC animals vs. the respective sham-operated groups, and SNP-evoked vasorelaxation was similar among all mice. Thus estimates of stimulated and basal endothelial nitric oxide release were better preserved in CIRKO vs. WT mice in response to 2 wk of TAC. These findings indicate that maladaptive LV remodeling previously observed in CIRKO-TAC mice is not precipitated by coronary artery dysfunction, because CIRKO mice exhibit compensatory mechanisms (e.g., increased eNOS transcript and protein) to maintain coronary endothelial function in the setting of pressure overload.


Assuntos
Vasos Coronários/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/metabolismo , Receptor de Insulina/genética , Disfunção Ventricular Esquerda/fisiopatologia , Acetilcolina/farmacologia , Análise de Variância , Animais , Western Blotting , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Ecocardiografia , Genótipo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Nitroprussiato/farmacologia , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , ômega-N-Metilarginina/farmacologia
8.
Exp Biol Med (Maywood) ; 235(12): 1489-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21127345

RESUMO

It is not uncommon for laboratory animals to be fasted prior to experimentation. Fasting evokes marked reductions in heart rate (HR), blood pressure (BP), heat production and oxygen consumption (VO(2)) in rodents. Mice with diet-induced obesity exhibit elevated HR and BP, and lower VO(2) and heat production in the fed condition versus their lean counterparts. It is unknown whether body composition alters the tempo of response to fasting. We tested the hypothesis that cardiovascular and metabolic responses to fasting are delayed in obese versus lean male C57BL/6J mice. In the fed condition, mice that consumed high-fat (HF, 45% fat) chow for 98 ± 5 days had elevated (P < 0.05) body fat percentage (DEXA), serum leptin (ELISA), HR and BP (72-h biotelemetry), and lower (P < 0.05) heat production and VO(2) (72-h metabolic chamber) versus animals that consumed standard chow (CON, 10% fat; n = 16 per group). HR, BP, VO(2), heat production and serum leptin decreased (all P < 0.05) in response to a 16-h fast (16:00-08:00 h) in both groups. Although the overall fold changes in cardiovascular and metabolic parameters were similar in magnitude among animals, fasting-induced reductions in cardiovascular and metabolic variables occurred ∼4 and ∼7 h earlier (P < 0.05), respectively, in HF versus CON mice. These findings indicate that while metabolic and cardiovascular stress evoked by a 16-h fast at 22°C is not different between HF and CON mice, fasting-induced responses occur sooner in obese animals.


Assuntos
Pressão Sanguínea/fisiologia , Metabolismo Energético/fisiologia , Jejum , Frequência Cardíaca/fisiologia , Obesidade/fisiopatologia , Animais , Tamanho Corporal , Temperatura Corporal , Catecolaminas/urina , Ingestão de Energia , Leptina/sangue , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/urina , Magreza/metabolismo , Magreza/fisiopatologia , Magreza/urina , Urina , Água/metabolismo
9.
Mol Endocrinol ; 22(11): 2531-43, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18801929

RESUMO

The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Receptor IGF Tipo 1/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Cardiomegalia/patologia , Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , Modelos Cardiovasculares , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Esforço Físico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor IGF Tipo 1/deficiência , Receptor IGF Tipo 1/genética , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Ribonucleotídeos/farmacologia , Transdução de Sinais , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...