Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361626

RESUMO

This work reviews major hydrocarbon hydrate advances in flowline applications of 25 international hydrate organizations. After a review of hydrate history and the current state-of-the-art, four conclusions were drawn: (1) engineers must take risks and cannot always afford the luxury to await scientific developments, (2) industry is more likely than academia to suggest hydrate needs and solutions, (3) the best hydrate blockage prevention practices are evolving and (4) a stepwise conceptual model can be proposed for a transient restart flowline hydrate blockage.

2.
Phys Chem Chem Phys ; 16(45): 25121-8, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25332072

RESUMO

Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

3.
Langmuir ; 29(50): 15551-7, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24266729

RESUMO

Clathrate hydrate adhesion forces play a critical role in describing aggregation and deposition behavior in conventional energy production and transportation. This manuscript uses a unique micromechanical force apparatus to measure the adhesion force between cyclopentane hydrate and heterogeneous quartz and calcite substrates. The latter substrates represent models for coproduced sand and scale often present during conventional energy production and transportation. Micromechanical adhesion force data indicate that clathrate hydrate adhesive forces are 5-10× larger for calcite and quartz minerals than stainless steel. Adhesive forces further increased by 3-15× when increasing surface contact time from 10 to 30 s. In some cases, liquid water from within the hydrate shell contacted the mineral surface and rapidly converted to clathrate hydrate. Further measurements on mineral surfaces with physical control of surface roughness showed a nonlinear dependence of water wetting angle on surface roughness. Existing adhesive force theory correctly predicted the dependence of clathrate hydrate adhesive force on calcite wettability, but did not accurately capture the dependence on quartz wettability. This comparison suggests that the substrate surface may not be inert, and may contribute positively to the strength of the capillary bridge formed between hydrate particles and solid surfaces.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23679404

RESUMO

The three-dimensional jamming of neutrally buoyant monodisperse, bidisperse, and tridisperse mixtures of particles flowing through a restriction under fluid flow has been studied. During the transient initial accumulation of particles at the restriction, a low probability of a jamming event is observed, followed by a transition to a steady-state flowing backlog of particles, where the jamming probability per particle reaches a constant. Analogous to the steady-state flow in gravity-driven jams, this results in a geometric distribution describing the number of particles that discharge prior to a jamming event. We develop new models to describe the transition from an accumulation to a steady-state flow, and the jamming probability after the transition has occurred. Predictions of the behavior of the geometric distribution see the log-probability of a jam occurring proportionally to (R(2)(2)-1), where R(2) is the ratio of opening diameter to the second moment number average particle diameter. This behavior is demonstrated to apply to more general restriction shapes, and collapses for all mixture compositions for the restriction sizes tested.


Assuntos
Hidrodinâmica , Modelos Teóricos , Probabilidade
5.
Langmuir ; 29(8): 2676-82, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23363244

RESUMO

Gas hydrates represent an unconventional methane resource and a production/safety risk to traditional oil and gas flowlines. In both systems, hydrate may share interfaces with both aqueous and hydrocarbon fluids. To accurately model macroscopic properties, such as relative permeability in unconventional systems or dispersion viscosity in traditional systems, knowledge of hydrate interfacial properties is required. This work presents hydrate cohesive force results measured on a micromechanical force apparatus, and complementary water-hydrocarbon interfacial tension data. By combining a revised cohesive force model with experimental data, two interfacial properties of cyclopentane hydrate were estimated: hydrate-water and hydrate-cyclopentane interfacial tension values at 0.32 ± 0.05 mN/m and 47 ± 5 mN/m, respectively. These fundamental physiochemical properties have not been estimated or measured for cyclopentane hydrate to date. The addition of surfactants in the cyclopentane phase significantly reduced the cyclopentane hydrate cohesive force; we hypothesize this behavior to be the result of surfactant adsorption on the hydrate-oil interface. Surface excess quantities were estimated for hydrate-oil and water-oil interfaces using four carboxylic and sulfonic acids. The results suggest the density of adsorbed surfactant may be 2× larger for the hydrate-oil interface than the water-oil interface. Additionally, hydrate-oil interfacial tension was observed to begin decreasing from the baseline value at significantly lower surfactant concentrations (1-3 orders of magnitude) than those for the water-oil interfacial tension.


Assuntos
Ciclopentanos/química , Tensoativos/química , Água/química , Adsorção , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
J Chem Phys ; 136(23): 234504, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22779603

RESUMO

In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

7.
J Colloid Interface Sci ; 376(1): 283-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484169

RESUMO

Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance.

8.
Rev Sci Instrum ; 83(1): 015106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22299985

RESUMO

We present a novel setup for a high pressure rheometer operating with concentric cylinders geometry for in situ studies of hydrate formation and rheological characterization. The apparatus uses an external high pressure mixing cell to saturate water-in-oil emulsions with methane gas. The capability of mixing combined with a true rheometer design make this apparatus unique in terms of setup and sample formation. We have used the apparatus to form gas hydrates in situ from water-in-oil emulsions and characterize suspension rheological properties such as yield stress and shear-thinning behavior.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061311, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367936

RESUMO

The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ~3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good agreement for experimental data on average times before jamming.

10.
Langmuir ; 28(1): 104-10, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22047095

RESUMO

The size of droplets in emulsions is important in many industrial, biological, and environmental systems, as it determines the stability, rheology, and area available in the emulsion for physical or chemical processes that occur at the interface. While the balance of fluid inertia and surface tension in determining droplet size under turbulent mixing in the inertial subrange has been well established, the classical scaling prediction by Shinnar half a century ago of the dependence of droplet size on the viscosity of the continuous phase in the viscous subrange has not been clearly validated in experiment. By employing extremely stable suspensions of highly viscous oils as the continuous phase and using a particle video microscope (PVM) probe and a focused beam reflectance method (FBRM) probe, we report measurements spanning 2 orders of magnitude in the continuous phase viscosity for the size of droplets in water-in-oil emulsions. The wide range in measurements allowed identification of a scaling regime of droplet size proportional to the inverse square root of the viscosity, consistent with the viscous subrange theory of Shinnar. A single curve for droplet size based on the Reynolds and Weber numbers is shown to accurately predict droplet size for a range of shear rates, mixing geometries, interfacial tensions, and viscosities. Viscous subrange control of droplet size is shown to be important for high viscous shear stresses, i.e., very high shear rates, as is desirable or found in many industrial or natural processes, or very high viscosities, as is the case in the present study.


Assuntos
Emulsões , Óleos , Reologia , Água
11.
Phys Chem Chem Phys ; 13(44): 19951-9, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21997437

RESUMO

Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.


Assuntos
Metano/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Termodinâmica , Água/química
12.
Phys Chem Chem Phys ; 13(44): 19796-806, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21984170

RESUMO

The present work uses a micromechanical force apparatus to directly measure cyclopentane clathrate hydrate cohesive force and hydrate-steel adhesive force, as a function of contact time, contact force and temperature. We present a hydrate interparticle force model, which includes capillary and sintering contributions and is based on fundamental interparticle force theories. In this process, we estimate the cyclopentane hydrate tensile strength to be approximately 0.91 MPa. This hydrate interparticle force model also predicts the effect of temperature on hydrate particle cohesion force. Finally, we present the first direct measurements of hydrate cohesive force in the gas phase to be 9.1 ± 2.1 mN/m at approximately 3 °C (as opposed to 4.3 ± 0.4 mN/m in liquid cyclopentane).

13.
J Phys Chem B ; 115(34): 10270-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21790193

RESUMO

Effective long-term storage remains a significant challenge to the use and development of protein pharmaceuticals. We have investigated the interactions between clathrate hydrates and model protein solutions to determine the effects on hydrate formation. Here, the dissociation curve and equilibrium conditions for xenon clathrate hydrate with model lysozyme and lactate dehydrogenase (LDH) protein solutions have been studied using calorimetry measurements at pressures ranging from 3 to 20 bar. Sucrose in solution was shown to exhibit small inhibition effects on xenon hydrate formation, shifting the dissociation curve and decreasing the conversion of water to hydrate by 15-26%. The addition of l-histidine buffer and lysozyme at low concentrations did not substantially inhibit hydrate formation. However, small shifts in the dissociation curve were demonstrated for solutions containing LDH. The presence of lysozyme and LDH in solution did not significantly alter the conversion of water to hydrate, indicating that these and similar proteins do not substantially affect the extent of xenon gas hydrate formation. Preliminary experiments were performed for LDH solutions to assess the impact of xenon hydrate formation and dissociation on enzymatic activity, with samples stored in hydrate systems showing small decreases in activity.


Assuntos
L-Lactato Desidrogenase/química , Muramidase/química , Água/química , Xenônio/química , Animais , Armazenamento de Medicamentos , Estabilidade Enzimática , Pressão , Coelhos , Temperatura de Transição
14.
Annu Rev Chem Biomol Eng ; 2: 237-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22432618

RESUMO

Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.


Assuntos
Gases/química , Água/química , Sedimentos Geológicos , Modelos Moleculares , Oceanos e Mares , Campos de Petróleo e Gás , Pressão , Temperatura , Termodinâmica
15.
J Phys Chem B ; 114(17): 5775-82, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20392117

RESUMO

Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems.

16.
Science ; 326(5956): 1095-8, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815725

RESUMO

Despite the industrial implications and worldwide abundance of gas hydrates, the formation mechanism of these compounds remains poorly understood. We report direct molecular dynamics simulations of the spontaneous nucleation and growth of methane hydrate. The multiple-microsecond trajectories offer detailed insight into the process of hydrate nucleation. Cooperative organization is observed to lead to methane adsorption onto planar faces of water and the fluctuating formation and dissociation of early hydrate cages. The early cages are mostly face-sharing partial small cages, favoring structure II; however, larger cages subsequently appear as a result of steric constraints and thermodynamic preference for the structure I phase. The resulting structure after nucleation and growth is a combination of the two dominant types of hydrate crystals (structure I and structure II), which are linked by uncommon 5(12)6(3) cages that facilitate structure coexistence without an energetically unfavorable interface.

17.
J Am Chem Soc ; 131(41): 14616-7, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19780560

RESUMO

Hydrogen hydrates with tetrahydrofuran (THF) as a promoter molecule are investigated to probe critical unresolved observations regarding cage occupancy and storage capacity. We adopted a new preparation method, mixing solid powdered THF with ice and pressurizing with hydrogen at 70 MPa and 255 +/- 2 K (these formation conditions are insufficient to form pure hydrogen hydrates). All results from Raman microprobe spectroscopy, powder X-ray diffraction, and gas volumetric analysis show a strong dependence of hydrogen storage capacity on THF composition. Contrary to numerous recent reports that claim it is impossible to store H(2) in large cages with promoters, this work shows that, below a THF mole fraction of 0.01, H(2) molecules can occupy the large cages of the THF+H(2) structure II hydrate. As a result, by manipulating the promoter THF content, the hydrogen storage capacity was increased to approximately 3.4 wt % in the THF+H(2) hydrate system. This study shows the tuning effect may be used and developed for future science and practical applications.

18.
J Phys Chem A ; 113(42): 11311-5, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19780602

RESUMO

Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

19.
J Phys Chem A ; 113(23): 6415-8, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19445522

RESUMO

In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.

20.
J Phys Chem A ; 113(24): 6540-3, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19459664

RESUMO

The first proof-of-concept of the formation of a double tert-butylamine (t-BuNH(2)) + hydrogen (H(2)) clathrate hydrate has been demonstrated. Binary clathrate hydrates with different molar concentrations of the large guest t-BuNH(2) (0.98-9.31 mol %) were synthesized at 13.8 MPa and 250 K, and characterized by powder X-ray diffraction and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed under hydrogen pressures. Raman spectroscopic data suggested that the hydrogen molecules occupied the small cages and had similar occupancy to hydrogen in the double tetrahydrofuran (THF) + H(2) clathrate hydrate. The hydrogen storage capacity in this system was approximately 0.7 H(2) wt % at the molar concentration of t-BuNH(2) close to the sII stoichiometry.


Assuntos
Butilaminas/química , Hidrogênio/química , Butilaminas/síntese química , Difração de Pó , Análise Espectral Raman , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...