Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 56(12): e4799, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929759
2.
J Mass Spectrom ; 56(12): e4800, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935246
3.
Microsc Microanal ; 20(2): 577-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548344

RESUMO

In situ microanalysis of solid samples is often performed using secondary ion mass spectrometry (SIMS) with a submicron ion probe. The destructive nature of the method makes it mandatory to prevent information loss by using instruments combining efficient collection of secondary ions and a mass spectrometer with parallel detection capabilities. The NanoSIMS meets those requirements with a magnetic spectrometer but its mass selectivity has to be improved for accessing opportunities expected from polyatomic secondary ions. We show here that it is possible to perform D/H ratio measurement images using 12CD-/12CH-, 16OD-/16OH-, or 12C2D-/12C2H- ratios. These polyatomic species allow simultaneous recording of D/H ratios and isotopic compositions of heavier elements like 15N/14N (via 12C15N-/12C14N-) and they provide a powerful tool to select the phase of interest (e.g., mineral versus organics). We present high mass resolution spectra and an example of isotopic imaging where D/H ratios were obtained via the 12C2D-/12C2H- ratio with 12C2D- free from neighboring mass interferences. Using an advanced mass resolution protocol, a "conventional" mass resolving power of 25,000 can be achieved. Those results open many perspectives for isotopic imaging at a fine scale in biology, material science, geochemistry, and cosmochemistry.

4.
J Biol ; 5(6): 20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17010211

RESUMO

BACKGROUND: Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. RESULTS: The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. CONCLUSION: MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Adipócitos/química , Adipócitos/citologia , Animais , Bromodesoxiuridina , Células Cultivadas , DNA/metabolismo , Células Endoteliais/química , Células Endoteliais/citologia , Gammaproteobacteria/química , Gammaproteobacteria/citologia , Isótopos/química , Camundongos , Proteínas/química , Proteínas/metabolismo , RNA/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...