Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 95(12): 2956-2970, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601682

RESUMO

Egg white is an important contributor to the protection of eggs against bacterial contaminations during the first half of incubation (day zero to 12), prior to the egg white transfer into the amniotic fluid to be orally absorbed by the embryo. This protective system relies on an arsenal of antimicrobial proteins and on intrinsic physicochemical properties that are generally unfavorable for bacterial multiplication and dissemination. Some changes in these parameters can be observed in egg white during egg storage and incubation. The aim of this work was to characterize changes in the antibacterial potential of egg white in embryonated eggs (FE) during the first half of incubation using unfertilized eggs (UF) as controls. Egg white samples were collected at day zero, 4, 8, and 12 and analyzed for pH, protein concentration, and protein profile. Antibacterial properties of egg white proteins were evaluated against Listeria monocytogenes, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. During incubation, differential variations of egg white pH and protein concentrations were observed between UF and FE. At equal protein concentrations, similar activities against L. monocytogenes and S. uberis were observed for FE and UF egg white proteins. A progressive decline in these activities, however, was observed over incubation time, regardless of the egg group (UF or FE). SDS-PAGE analysis of egg white proteins during incubation revealed discrete changes in the profile of major proteins, whereas the stability of some less abundant antimicrobial proteins seemed more affected. To conclude, the antibacterial activity of egg white proteins progressively decreased during the first half of egg incubation, possibly resulting from the alteration of specific antimicrobial proteins. This apparent decline may be partly counterbalanced in embryonated eggs by the increase in egg white protein concentration. The antibacterial potential of egg white is very effective during early stages of embryonic development but its alteration during incubation suggests that extra-embryonic structures could then progressively ensure protective functions.


Assuntos
Embrião de Galinha/microbiologia , Clara de Ovo/microbiologia , Óvulo/microbiologia , Animais , Resistência à Doença/fisiologia , Escherichia coli , Listeria monocytogenes , Salmonella enteritidis , Staphylococcus aureus , Streptococcus
2.
Br J Pharmacol ; 158(5): 1248-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19814723

RESUMO

BACKGROUND AND PURPOSE: For many years, it was suspected that sheep expressed only one melatonin receptor (closely resembling MT(1) from other mammal species). Here we report the cloning of another melatonin receptor, MT(2), from sheep. EXPERIMENTAL APPROACH: Using a thermo-resistant reverse transcriptase and polymerase chain reaction primer set homologous to the bovine MT(2) mRNA sequence, we have cloned and characterized MT(2) receptors from sheep retina. KEY RESULTS: The ovine MT(2) receptor presents 96%, 72% and 67% identity with cattle, human and rat respectively. This MT(2) receptor stably expressed in CHO-K1 cells showed high-affinity 2[(125)I]-iodomelatonin binding (K(D)= 0.04 nM). The rank order of inhibition of 2[(125)I]-iodomelatonin binding by melatonin, 4-phenyl-2-propionamidotetralin and luzindole was similar to that exhibited by MT(2) receptors of other species (melatonin > 4-phenyl-2-propionamidotetralin > luzindole). However, its pharmacological profile was closer to that of rat, rather than human MT(2) receptors. Functionally, the ovine MT(2) receptors were coupled to G(i) proteins leading to inhibition of adenylyl cyclase, as the other melatonin receptors. In sheep brain, MT(2) mRNA was expressed in pars tuberalis, choroid plexus and retina, and moderately in mammillary bodies. Real-time polymerase chain reaction showed that in sheep pars tuberalis, premammillary hypothalamus and mammillary bodies, the temporal pattern of expression of MT(1) and MT(2) mRNA was not parallel in the three tissues. CONCLUSION AND IMPLICATIONS: Co-expression of MT(1) and MT(2) receptors in all analysed sheep brain tissues suggests that MT(2) receptors may participate in melatonin regulation of seasonal anovulatory activity in ewes by modulating MT(1) receptor action.


Assuntos
Receptor MT2 de Melatonina/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células CHO , Bovinos , Clonagem Molecular , Cricetinae , Cricetulus , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Ensaio Radioligante , Ratos , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/metabolismo , Proteínas Recombinantes/metabolismo , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Ovinos , Tetra-Hidronaftalenos/farmacologia , Triptaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...