Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(26): 22511-22521, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811893

RESUMO

We report on the reaction of ethylene-terminated heteroatoms (C2X; X = N, O, and S) with CS2/CO2 using Mukaiyama reagent (2-chloro-1-methylpyridinium iodide, CMPI) as a promoter for the preparation of imidazolidin-2-one, oxazolidin-2-one, 1,3-dioxolan-2-one, 1,3-dithiolan-2-one, and their thione counterparts at ambient temperature and pressure. Spectroscopic measurements, viz., 1H/13C nuclear magnetic resonance (NMR) and ex situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy methods verified the reaction of CS2/CO2 with the ethylene-based substrates and subsequently the formation of cyclic products. The experimental data indicated the formation of the enol-form of imidazolidin-2-one and oxazolidin-2-one, while the keto-form was obtained for their thione correspondents. Furthermore, density functional theory calculations revealed the stability of the keto- over the enol-form for all reactions and pointed out the solvent effect in stabilizing the latter.

2.
Dalton Trans ; 49(23): 7673-7679, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32501467

RESUMO

An in situ generated zinc ascorbate pre-catalyst for cyclic carbonate (CC) synthesis via CO2 coupling with epoxides under ambient conditions was reported. Spectroscopic measurements indicated that CO2 was inserted into the zinc ascorbate complex through the formation of an activated zinc carbonate catalyst upon abstracting the enediol protons with sodium hydride. The aliphatic diols were not activated under the applied conditions and did not interfere with either the process of cycloaddition or CO2 activation. The catalyst was active against different terminal epoxides, with a conversion of 75 and 85%, when propylene oxide and styrene oxide were used at 20 and 50 °C, respectively under 1 atm CO2 for 17 h, which was considered a good advancement for heterogeneous based catalysis. Moreover, green chemistry principles were applied to ultimately end up with more ecofriendly approaches for the synthesis of CC following a simple balloon technique. Herein, we used zinc as a sustainable metal, together with ascorbic acid as a bio-renewable material in addition to CO2 as a renewable feed-stock. Furthermore, waste prevention was achieved using the reaction side product, viz., NaBr as a co-catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...