Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203037

RESUMO

Ultrasonic non-destructive evaluation in pulse-echo mode is used for the inspection of single-lap aluminum adhesive joints, which contain interface defects in bonding area. The aim of the research is to increase the probability of defect detection in addition to ensuring that the defect sizes are accurately estimated. To achieve this, this study explores additional ultrasonic features (not only amplitude) that could provide more accurate information about the quality of the structure and the presence of interface defects. In this work, two types of interface defects, namely inclusions and delaminations, were studied based on the extracted ultrasonic features in order to evaluate the expected feasibility of defect detection and the evaluation of its performance. In addition, an analysis of multiple interface reflections, which have been proved to improve detection in our previous works, was applied along with the extraction of various ultrasonic features, since it can increase the probability of defect detection. The ultrasonic features with the best performance for each defect type were identified and a comparative analysis was carried out, showing that it is more challenging to size inclusion-type defects compared to delaminations. The best performance is observed for the features such as peak-to-peak amplitude, ratio coefficients, absolute energy, absolute time of flight, mean value of the amplitude, standard deviation value, and variation coefficient for both types of defects. The maximum relative error of the defect size compared to the real one for these features is 16.9% for inclusions and 3.6% for delaminations, with minimum errors of 11.4% and 2.2%, respectively. In addition, it was determined that analysis of the data from repetitive reflections from the sample interface, namely, the aluminum-adhesive second and third reflections, that these contribute to an increase in the probability of defect detection.

2.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925402

RESUMO

Adhesively bonded dissimilar materials have attracted high interest in the aerospace and automotive industries due to their ability to provide superior structural characteristics and reduce the weight for energy savings. This work focuses on the improvement of disbond-type defect detectability using the immersion pulse-echo ultrasonic technique and an advanced post-processing algorithm. Despite the extensive work done for investigation, it is still challenging to locate such defects in dissimilar material joints due to the large differences in the properties of metals and composites as well as the multi-layered structure of the component. The objective of this work is to improve the detectability of defects in adhesively bonded aluminum and carbon fiber-reinforced plastic (CFRP) by the development of an advanced post-processing algorithm. It was determined that an analysis of multiple reflections has a high potential to improve detectability according to results received by inspection simulations and the evaluation of boundary characteristics. The impact of a highly influential parameter such as the sample curvature can be eliminated by the alignment of arrival time of signals reflected from the sample. The processing algorithm for the improvement of disbond detectability was developed based on time alignment followed by selection of the time intervals with a significant amplitude change of the signals reflected from defective and defect-free areas and shows significant improvement of disbond detectability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...