Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 39(6): 1645-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690859

RESUMO

In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators. The fabrication of distributed Bragg reflector structures has shown improvement in terms of pattern definition accuracy with respect to the same structures fabricated with normal ZEP resist. Straight InP membrane waveguides with different lengths have been fabricated using this mixed resist. A decrease of the propagation loss from 6.6 to 3.3 dB/cm has been demonstrated.

2.
Opt Express ; 20(26): B386-92, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262878

RESUMO

A high speed, high density and potentially low cost solution for realizing a compact transceiver module is presented in this paper. It is based on directly bonding an Opto-electronic die on top of CMOS IC chip and creating a photoresist ramp to bridge the big step (around 220 µm) from Opto-electronic pads to CMOS IC pads. The required electrical connection between them is realized lithographically with a process than can be scaled to full wafer production. A 12-channel transmitter based on the technique was fabricated and test shows good performance up to 12.5 Gb/s/ch.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 1): 041106, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214528

RESUMO

Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is high-selectivity fractionation of particle or molecule distributions. Here, we investigate the functioning of an important model system, the on/off ratchet for water-suspended particles, in which interdigitated finger electrodes can be switched on and off to create a time-dependent, spatially periodic but asymmetric potential. Surprisingly, we find that mainly dielectrophoretic rather than electrophoretic forces are responsible for the ratchet effect. This has major implications for the (a)symmetry of the ratchet potential and the settings needed for optimal performance. We demonstrate that by applying a potential offset the ratchet can be optimized such that its particle displacement efficiency reaches the theoretical upper limit corresponding to the electrode geometry and particle size. Efficient fractionation based on size selectivity is therefore not only possible for charged species, but also for uncharged ones, which greatly expands the applicability range of this type of Brownian ratchet.

4.
Opt Express ; 19(16): 15109-18, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21934872

RESUMO

We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.

5.
Nat Mater ; 10(1): 51-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151165

RESUMO

The possibility to extract work from periodic, undirected forces has intrigued scientists for over a century­in particular, the rectification of undirected motion of particles by ratchet potentials, which are periodic but asymmetric functions. Introduced by Smoluchowski and Feynman to study the (dis)ability to generate motion from an equilibrium situation, ratchets operate out of equilibrium, where the second law of thermodynamics no longer applies. Although ratchet systems have been both identified in nature and used in the laboratory for the directed motion of microscopic objects, electronic ratchets have been of limited use, as they typically operate at cryogenic temperatures and generate subnanoampere currents and submillivolt voltages. Here, we present organic electronic ratchets that operate up to radio frequencies at room temperature and generate currents and voltages that are orders of magnitude larger. This enables their use as a d.c. power source. We integrated the ratchets into logic circuits, in which they act as the d.c. equivalent of the a.c. transformer, and generate enough power to drive the circuitry. Our findings show that electronic ratchets may be of actual use.

6.
Opt Express ; 17(13): 11107-12, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19550510

RESUMO

We demonstrate lasing in Metal-Insulator-Metal (MIM) waveguides filled with electrically pumped semiconductor cores, with core width dimensions below the diffraction limit. Furthermore these waveguides propagate a transverse magnetic (TM0) or so called gap plasmon mode [1-4]. Hence we show that losses in sub-wavelength MIM waveguides can be overcome to create small plasmon mode lasers at wavelengths near 1500 nm. We also give results showing room temperature lasing in MIM waveguides, with approximately 310 nm wide semiconductor cores which propagate a transverse electric mode.


Assuntos
Lasers , Metais/química , Semicondutores , Desenho de Equipamento , Luz , Óptica e Fotônica , Refratometria/métodos , Reprodutibilidade dos Testes , Temperatura , Difração de Raios X
7.
ACS Nano ; 2(4): 622-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206591

RESUMO

Noncontact potentiometry or scanning Kelvin probe microscopy (SKPM) is a widely used technique to study charge injection and transport in (in)organic devices by measuring a laterally resolved local potential. This technique suffers from the significant drawback that experimentally obtained curves do not generally reflect the true potential profile in the device due to nonlocal coupling between the probing tip and the device. In this work, we quantitatively explain the experimental SKPM response and by doing so directly link theoretical device models to real observables. In particular, the model quantitatively explains the effects of the tip-sample distance and the dependence on the orientation of the probing tip with respect to the device.


Assuntos
Artefatos , Teste de Materiais/métodos , Microscopia de Varredura por Sonda/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Campos Eletromagnéticos , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Opt Express ; 15(25): 16292-301, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19550918

RESUMO

First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 mum is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.

9.
Nature ; 432(7014): 206-9, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15538365

RESUMO

The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 x 40 microm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20 ps with 5.5 fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...