Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300042

RESUMO

Regulation of extracellular acid-base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2 At 13°C, H. gammarus juveniles were able to fully compensate for acid-base disturbances caused by the exposure to elevated seawater PCO2  at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3-] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2 , indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid-base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.


Assuntos
Dióxido de Carbono , Nephropidae , Equilíbrio Ácido-Base , Animais , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-32320756

RESUMO

Embryos of the salamander Ambystoma maculatum (Shaw) and the uni-cellular green alga Oophila amblystomatis (Lambert ex Wille) have evolved a resource exchange mutualism. Whereas some of the benefits of the symbiosis to embryos are known, the physiological limitations of the relationship to embryos and carry over or latent effects on larvae are not. To determine the impact of the relationship across life history stages, we measured the growth, survival, and metabolic rate in response to hypoxia of salamander embryos reared under 0-h light (algae absent), 14-h light (control - algae present, fluctuating light conditions) and 24-h light (algae present, chronic light conditions) and the resulting larvae two-weeks post hatch. Embryos reared under 0-h light demonstrated decreased growth and survival compared to 14- and 24-h light, with no effect on metabolic rates or the response of metabolic rates to declining oxygen partial pressure (pO2). Conversely, larvae from embryos reared under 0-h light exhibited compensatory growth during the two-week larval rearing period, with body sizes matching those from the 14-h light treatment. Larvae from embryos reared under 24-h light had lower wet body mass and LT50 values upon starvation compared to those reared under 14-h light. Coupled with the lowest metabolic rates under normoxic pO2 levels, this indicates the presence of negative latent effects. We discuss the findings in relation to the effect of the symbiotic relationship on hypoxia tolerance and larval fitness with respect to the presence of compensatory growth and negative latent effects.


Assuntos
Ambystoma/fisiologia , Clorófitas/fisiologia , Simbiose , Ambystoma/embriologia , Animais , Tamanho Corporal , Larva/crescimento & desenvolvimento , Luz
3.
Sci Rep ; 6: 20194, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822220

RESUMO

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.


Assuntos
Organismos Aquáticos , Modelos Biológicos , Oceanos e Mares , Dinâmica Populacional , Animais , Feminino , Masculino
4.
Physiol Biochem Zool ; 88(5): 494-507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658247

RESUMO

An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.


Assuntos
Dióxido de Carbono/efeitos adversos , Mudança Climática , Nephropidae/crescimento & desenvolvimento , Nephropidae/fisiologia , Temperatura , Exoesqueleto/crescimento & desenvolvimento , Animais , Metabolismo Basal/fisiologia , Tamanho Corporal , Larva/crescimento & desenvolvimento , Larva/fisiologia , Estágios do Ciclo de Vida/fisiologia , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...