Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 25(3): 387-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23465541

RESUMO

It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genoma , Mamíferos/genética , Animais , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
Genome Res ; 22(8): 1426-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684280

RESUMO

CBX5, CBX1, and CBX3 (HP1α, ß, and γ, respectively) play an evolutionarily conserved role in the formation and maintenance of heterochromatin. In addition, CBX5, CBX1, and CBX3 may also participate in transcriptional regulation of genes. Recently, CBX3 binding to the bodies of a subset of genes has been observed in human and murine cells. However, the generality of this phenomenon and the role CBX3 may play in this context are unknown. Genome-wide localization analysis reveals CBX3 binding at genic regions, which strongly correlates with gene activity across multiple cell types. Depletion of CBX3 resulted in down-regulation of a subset of target genes. Loss of CBX3 binding leads to a more dramatic accumulation of unspliced nascent transcripts. In addition, we observed defective recruitment of splicing factors, including SNRNP70, to CBX3 target genes. Collectively, our data suggest a role for CBX3 in aiding in efficient cotranscriptional RNA processing.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Genoma Humano , Heterocromatina/metabolismo , Processamento Pós-Transcricional do RNA , Sítios de Ligação , Imunoprecipitação da Cromatina , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Éxons , Regulação da Expressão Gênica , Células HCT116 , Heterocromatina/genética , Humanos , Células K562 , Ligação Proteica , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transcrição Gênica , Ativação Transcricional
3.
Mol Cell ; 40(5): 736-48, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145482

RESUMO

The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.


Assuntos
Ciclo Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Citometria de Fluxo , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Transfecção
4.
Nat Struct Mol Biol ; 15(3): 318-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18264112

RESUMO

Little is known of the specific biochemical mechanism by which heterochromatin protein 1 (HP1) inactivates a gene. We analyzed HP1-mediated inhibition of preinitiation complex (PIC) assembly in vitro on chromatin templates regulated by GAL4-VP16 or Sp1. HP1 blocked key subunits of the TFIID and Mediator coactivator complexes. Notably, binding of the same subunits was inhibited by HP1 on the Sp1-regulated survivin gene in vivo upon DNA damage-induced silencing.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase II/metabolismo , Inativação Gênica , Transativadores/metabolismo , Homólogo 5 da Proteína Cromobox , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Survivina , Transativadores/isolamento & purificação , Fator de Transcrição TFIIA/isolamento & purificação , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/isolamento & purificação , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica
5.
Genes Dev ; 21(10): 1169-78, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17470536

RESUMO

Mammalian euchromatic gene silencing results from the combined repressive effects of histone and DNA methyltransferases. Little is known of the mechanism by which these enzymes cooperate to induce silencing. Here we show that mammalian HP1 family members mediate communication between histone and DNA methyltransferases. In vitro, methylation of histone 3 Lys 9 by G9a creates a binding platform for HP1alpha, beta, and gamma. DNMT1 interacts with HP1 resulting in increased DNA methylation on DNA and chromatin templates in vitro. The functional and physical interaction can be recapitulated in vivo. Binding of GAL4-HP1 to a reporter construct is sufficient to induce repression and DNA methylation in DNMT1 wild-type but not DNMT1-null cells. Additionally, silencing of the Survivin gene coincides with recruitment of G9a and HP1 in DNMT1 wild-type but not null cells. We conclude that direct interactions between HP1 and DNMT1 mediate silencing of euchromatic genes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica/fisiologia , Histonas/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Homólogo 5 da Proteína Cromobox , DNA (Citosina-5-)-Metiltransferase 1 , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Metiltransferases , Survivina
6.
Genes Dev ; 20(22): 3089-103, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17085482

RESUMO

Chromatin methylation is necessary for stable repression of gene expression during mammalian development. During cell division, DNMT1 maintains the DNA methylation pattern of the newly synthesized daughter strand, while G9a methylates H3K9. Here, DNMT1 is shown to directly bind G9a both in vivo and in vitro and to colocalize in the nucleus during DNA replication. The complex of DNMT1 and G9a colocalizes with dimethylated H3K9 (H3K9me2) at replication foci. Similarly, another H3K9 histone methyltransferase, SUV39H1, colocalizes with DNMT1 on heterochromatic regions of the nucleoli exclusively before cell division. Both DNMT1 and G9a are loaded onto the chromatin simultaneously in a ternary complex with loading factor PCNA during chromatin replication. Small interfering RNA (siRNA) knockdown of DNMT1 impairs DNA methylation, G9a loading, and H3K9 methylation on chromatin and rDNA repeats, confirming DNMT1 as the primary loading factor. Additionally, the complex of DNMT1 and G9a led to enhanced DNA and histone methylation of in vitro assembled chromatin substrates. Thus, direct cooperation between DNMT1 and G9a provides a mechanism of coordinated DNA and H3K9 methylation during cell division.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Replicação do DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Células COS , Chlorocebus aethiops , DNA (Citosina-5-)-Metiltransferases/química , DNA Espaçador Ribossômico/metabolismo , Células HCT116 , Células HeLa , Heterocromatina/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Humanos , Células Jurkat , Metiltransferases/metabolismo , Modelos Genéticos , Ligação Proteica , Proteínas Metiltransferases , Transporte Proteico , Proteínas Repressoras/metabolismo
8.
Genes Dev ; 16(14): 1852-63, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12130544

RESUMO

Activator-mediated transcription complex assembly on templates lacking chromatin requires the interaction of activators with two major coactivator complexes: TFIID and mediator. Here we employed immobilized template assays to correlate transcriptional activation with mediator and TFIID recruitment. In reactions reconstituted with purified proteins, we found that activator, TFIID, and mediator engage in reciprocal cooperative interactions to form a complex on promoter DNA. Preassembly of the coactivator complex accelerates the rate of transcription in a cell-free system depleted of TFIID and mediator. Our data argue that this coactivator complex is an intermediate in the assembly of an active transcription complex. Furthermore, the reciprocity of the interactions demonstrates that the complex could in principle be nucleated with either TFIID or mediator, implying that alternative pathways could be utilized to generate diversity in the way activators function in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição , Extratos Celulares , Núcleo Celular/metabolismo , DNA , Células HeLa , Humanos , Complexo Mediador , Subunidade 1 do Complexo Mediador , Fator de Transcrição TFIID , Transcrição Gênica
9.
Mol Ther ; 5(3): 223-32, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11863411

RESUMO

Gene therapy is founded on the concept that tissue-specific promoters can express heterologous genes for molecular imaging or therapeutic applications. The engineering of cell-specific enhancers to improve potency and the development of two-step transcriptional activation (TSTA) approaches have significantly improved the efficacy of transgene expression. Here we combine these technologies to create a robust, titratable, androgen-responsive system targeted to prostate cancer cells. Our "chimeric" TSTA system uses a duplicated variant of the prostate-specific antigen (PSA) gene enhancer to express GAL4 derivatives fused to one, two, or four VP16 activation domains. We targeted the resulting activators to cells with reporter templates bearing one, two, or five GAL4 binding sites upstream of firefly luciferase. We monitored activity via firefly luciferase assays in transfected cell extracts and in live nude mice using a cooled charge-coupled device (CCD) imaging system. In this system, we found that firefly luciferase expression in prostate cancer cells can be varied over an 800-fold range. We also found that a single plasmid bearing the optimized enhancer, GAL4-VP16 derivative, and reporter expressed firefly luciferase at 20-fold higher levels than the cytomegalovirus enhancer. We discuss the implications of this strategy and its application to molecular imaging and therapy.


Assuntos
Engenharia Genética , Terapia Genética/métodos , Técnicas de Amplificação de Ácido Nucleico , Neoplasias da Próstata/terapia , Animais , Elementos Facilitadores Genéticos , Amplificação de Genes , Técnicas de Transferência de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Estrutura Terciária de Proteína , Distribuição Tecidual , Transcrição Gênica , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...