Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 218(3)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34849860

RESUMO

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Finally, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.


Assuntos
Dieta , Fígado/metabolismo , MicroRNAs/genética , Herança Multifatorial , RNA Mensageiro/genética , Animais , Genótipo , Hibridização Genética , Camundongos , MicroRNAs/metabolismo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transcriptoma
2.
Genetics ; 216(1): 241-259, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763908

RESUMO

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.


Assuntos
Dieta , Variação Genética , Hibridização Genética , Fígado/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Variação Biológica da População , Camundongos , MicroRNAs/metabolismo , Fenótipo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transcriptoma
3.
Physiol Genomics ; 51(2): 59-71, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633643

RESUMO

Trimethylamine-N-oxide (TMAO), a microbial choline metabolism byproduct that is processed in the liver and excreted into circulation, is associated with increased atherosclerotic lesion formation and cardiovascular disease risk. Genetic regulators of TMAO levels are largely unknown. In the present study, we used 288 mice from a genetically heterogeneous mouse population [Diversity Outbred (DO)] to determine hepatic microRNA associations with TMAO in the context of an atherogenic diet. We also validated findings in two additional animal models of atherosclerosis: liver-specific insulin receptor knockout mice fed a chow diet (LIRKO) and African green monkeys fed high-fat/high-cholesterol diet. Small RNA-sequencing analysis in DO mice, LIRKO mice, and African green monkeys identified only one hepatic microRNA (miR-146a-5p) that is aberrantly expressed across all three models. Moreover, miR-146a-5p levels are associated with circulating TMAO after atherogenic diet in each of these models. We also performed high-resolution genetic mapping and identified a novel quantitative trait locus on Chromosome 12 for TMAO levels. This interval includes two genes, Numb and Dlst, which are inversely correlated with both miR-146a and TMAO and are predicted targets of miR-146a. Both of these genes have been validated as direct targets of miR-146a, though in other cellular contexts. This is the first report to our knowledge of a link between miR-146 and TMAO. Our findings suggest that miR-146-5p, as well as one or more genes at the Chromosome 12 QTL (possibly Numb or Dlst), is strongly linked to TMAO levels and likely involved in the control of atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Metilaminas/metabolismo , MicroRNAs/genética , Animais , Chlorocebus aethiops , Colina/metabolismo , Estudos de Coortes , Camundongos de Cruzamento Colaborativo , Dieta Aterogênica , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Fígado/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA-Seq , Receptor de Insulina/genética , Fatores de Risco
4.
Physiol Genomics ; 49(11): 618-629, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916633

RESUMO

Chronically altered levels of circulating lipids, termed dyslipidemia, is a significant risk factor for a number of metabolic and cardiovascular morbidities. MicroRNAs (miRNAs) have emerged as important regulators of lipid balance, have been implicated in dyslipidemia, and have been proposed as candidate therapeutic targets in lipid-related disorders including atherosclerosis. A major limitation of most murine studies of miRNAs in lipid metabolic disorders is that they have been performed in just one (or very few) inbred strains, such as C57BL/6. Moreover, although individual miRNAs have been associated with lipid phenotypes, it is well understood that miRNAs likely work together in functional modules. To address these limitations, we implemented a systems genetics strategy using the Diversity Outbred (DO) mouse population. Specifically, we performed gene and miRNA expression profiling in the livers from ~300 genetically distinct DO mice after 18 wk on either a high-fat/high-cholesterol diet or a high-protein diet. Large-scale correlative analysis of these data with a wide range of cardio-metabolic end points revealed a co-regulated module of miRNAs significantly associated with circulating low-density lipoprotein cholesterol (LDL-C) levels. The hubs of this module were identified as miR-199a, miR-181b, miR-27a, miR-21_-_1, and miR-24. In sum, we demonstrate that a high-fat/high-cholesterol diet robustly rewires the miRNA regulatory network, and we identify a small group of co-regulated miRNAs that may exert coordinated effects to control circulating LDL-C.


Assuntos
LDL-Colesterol/sangue , Dislipidemias/sangue , Dislipidemias/genética , Redes Reguladoras de Genes , Fígado/metabolismo , MicroRNAs/genética , Animais , Dieta Hiperlipídica , Camundongos , MicroRNAs/metabolismo , Obesidade/sangue , Fenótipo
5.
G3 (Bethesda) ; 4(12): 2353-63, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25344410

RESUMO

Inbred mice exhibit strain-specific variation in susceptibility to atherosclerosis and dyslipidemia that renders them useful in dissecting the genetic architecture of these complex diseases. Traditional quantitative trait locus (QTL) mapping studies using inbred strains often identify large genomic regions, containing many genes, due to limited recombination and/or sample size. This hampers candidate gene identification and translation of these results into possible risk factors and therapeutic targets. An alternative approach is the use of multiparental outbred lines for genetic mapping, such as the Diversity Outbred (DO) mouse panel, which can be more informative than traditional two-parent crosses and can aid in the identification of causal genes and variants associated with QTL. We fed 292 female DO mice either a high-fat, cholesterol-containing (HFCA) diet, to induce atherosclerosis, or a low-fat, high-protein diet for 18 wk and measured plasma lipid levels before and after diet treatment. We measured markers of atherosclerosis in the mice fed the HFCA diet. The mice were genotyped on a medium-density single-nucleotide polymorphism array and founder haplotypes were reconstructed using a hidden Markov model. The reconstructed haplotypes were then used to perform linkage mapping of atherosclerotic lesion size as well as plasma total cholesterol, triglycerides, insulin, and glucose. Among our highly significant QTL we detected a ~100 kb QTL interval for atherosclerosis on Chromosome 6, as well as a 1.4 Mb QTL interval on Chromosome 9 for triglyceride levels at baseline and a coincident 22.2 Mb QTL interval on Chromosome 9 for total cholesterol after dietary treatment. One candidate gene within the Chromosome 6 peak region associated with atherosclerosis is Apobec1, the apolipoprotein B (ApoB) mRNA-editing enzyme, which plays a role in the regulation of ApoB, a critical component of low-density lipoprotein, by editing ApoB mRNA. This study demonstrates the value of the DO population to improve mapping resolution and to aid in the identification of potential therapeutic targets for cardiovascular disease. Using a DO mouse population fed an HFCA diet, we were able to identify an A/J-specific isoform of Apobec1 that contributes to atherosclerosis.


Assuntos
Aterosclerose/genética , Citidina Desaminase/genética , Desaminase APOBEC-1 , Animais , Aterosclerose/patologia , Glicemia/análise , Colesterol/sangue , Mapeamento Cromossômico , Dieta Hiperlipídica , Feminino , Genoma , Genótipo , Haplótipos , Insulina/sangue , Cadeias de Markov , Camundongos , Camundongos Endogâmicos , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
6.
Leuk Lymphoma ; 55(6): 1357-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24033105

RESUMO

l-asparaginase (L-asp), a bacterial enzyme that depletes extracellular asparagine, is used to treat acute lymphoblastic leukemia in humans and a variety of aggressive lymphoid malignancies in dogs. Resistance to this drug is an important cause of treatment failure in both species. Using canine lymphoid cell lines, we found that L-asp sensitivity is strongly negatively correlated with the level of methylation of the asparagine synthetase (ASNS) promoter. Selection for in vitro resistance was accompanied by increased ASNS promoter methylation and decreased ASNS mRNA expression. In addition, treatment with the hypomethylating agent 5-azacytidine increased resistance to L-asp. ASNS methylation and expression is not predictive of overall survival or progression-free survival in canine lymphoma patients treated with L-asp. Our data suggest that ASNS is an important factor in mediating the in vitro response of canine lymphoid cells to L-asp; however, resistance mechanisms may be more complex in dogs treated clinically with L-asp, potentially due to concurrent treatments.


Assuntos
Asparaginase/farmacologia , Aspartato-Amônia Ligase/genética , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Animais , Asparaginase/administração & dosagem , Aspartato-Amônia Ligase/metabolismo , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA , Modelos Animais de Doenças , Cães , Humanos , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/metabolismo , Linfoma/mortalidade , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...