Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1761, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741936

RESUMO

Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.

2.
Phys Rev Lett ; 123(21): 210501, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809160

RESUMO

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

3.
Phys Rev Lett ; 121(9): 090502, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230854

RESUMO

Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations. This research lays the foundation for stabilizing qubit performance through calibration, design, and fabrication.

4.
Phys Rev Lett ; 118(5): 057702, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28211704

RESUMO

By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around 2k_{B}T/h≈1 GHz, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a 1/f power law that matches the magnitude of the 1/f noise near 1 Hz. The antisymmetric component displays a 1/T dependence below 100 mK, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells.

5.
Phys Rev Lett ; 104(2): 020502, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20366577

RESUMO

We simulate the quantum adiabatic algorithm (QAA) for the exact cover problem for sizes up to N=256 using quantum Monte Carlo simulations incorporating parallel tempering. At large N, we find that some instances have a discontinuous (first-order) quantum phase transition during the evolution of the QAA. This fraction increases with increasing N and may tend to 1 for N-->infinity.

6.
Phys Rev Lett ; 101(17): 170503, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999732

RESUMO

We study the typical (median) value of the minimum gap in the quantum version of the exact cover problem using quantum Monte Carlo simulations, in order to understand the complexity of the quantum adiabatic algorithm for much larger sizes than before. For a range of sizes N< or =128, where the classical Davis-Putnam algorithm shows exponential median complexity, the quantum adiabatic algorithm shows polynomial median complexity. The bottleneck of the algorithm is an isolated avoided-crossing point of a Landau-Zener type (collision between the two lowest energy levels only).

7.
J Phys Condens Matter ; 19(31): 315205, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21694106

RESUMO

We show that the spin polarization of electron density in non-magnetic degenerate semiconductors can achieve 100%. The effect of 100% spin accumulation does not require a half-metallic ferromagnetic contact and can be realized in ferromagnet-semiconductor FM-n(+)-n junctions even at moderate spin selectivity of the FM-n(+) contact when the electrons with spin 'up' are extracted from n semiconductor through the heavily doped n(+) layer into the ferromagnet and the electrons with spin 'down' are accumulated near the n(+)-n interface. We derived a general equation relating spin polarization of the current to that of the electron density in non-magnetic semiconductors. We found that the effect of complete spin polarization is achieved near the n(+)-n interface when the concentration of the spin 'up' electrons tends to zero in this region while the diffusion current of these electrons remains finite.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 1): 021905, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196602

RESUMO

We present a Bayesian dynamical inference method for characterizing cardiorespiratory (CR) dynamics in humans by inverse modeling from blood pressure time-series data. The technique is applicable to a broad range of stochastic dynamical models and can be implemented without severe computational demands. A simple nonlinear dynamical model is found that describes a measured blood pressure time series in the primary frequency band of the CR dynamics. The accuracy of the method is investigated using model-generated data with parameters close to the parameters inferred in the experiment. The connection of the inferred model to a well-known beat-to-beat model of the baroreflex is discussed.


Assuntos
Determinação da Pressão Arterial/métodos , Pressão Sanguínea/fisiologia , Diagnóstico por Computador/métodos , Frequência Cardíaca/fisiologia , Modelos Biológicos , Oscilometria/métodos , Mecânica Respiratória/fisiologia , Algoritmos , Relógios Biológicos/fisiologia , Simulação por Computador , Humanos , Modelos Estatísticos , Dinâmica não Linear , Fluxo Pulsátil/fisiologia
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026202, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196679

RESUMO

An algorithm is presented for reconstructing stochastic nonlinear dynamical models from noisy time-series data. The approach is analytical; consequently, the resulting algorithm does not require an extensive global search for the model parameters, provides optimal compensation for the effects of dynamical noise, and is robust for a broad range of dynamical models. The strengths of the algorithm are illustrated by inferring the parameters of the stochastic Lorenz system and comparing the results with those of earlier research. The efficiency and accuracy of the algorithm are further demonstrated by inferring a model for a system of five globally and locally coupled noisy oscillators.

10.
Phys Rev Lett ; 94(9): 098101, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15784004

RESUMO

We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Modelos Cardiovasculares , Dinâmica não Linear , Pressão Sanguínea/fisiologia , Processos Estocásticos
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(3 Pt 2): 036702, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15524670

RESUMO

In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (instead of only energy) is used, and are able to show the existence of a dynamic threshold gamma= gamma(d) starting with some value of K -the number of variables in each clause. Beyond the dynamic threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.

12.
Chaos ; 11(3): 587-594, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12779496

RESUMO

We discuss activated escape from a metastable state of a system driven by a time-periodic force. We show that the escape probabilities can be changed very strongly even by a comparatively weak force. In a broad parameter range, the activation energy of escape depends linearly on the force amplitude. This dependence is described by the logarithmic susceptibility, which is analyzed theoretically and through analog and digital simulations. A closed-form explicit expression for the escape rate of an overdamped Brownian particle is presented and shown to be in quantitative agreement with the simulations. We also describe experiments on a Brownian particle optically trapped in a double-well potential. A suitable periodic modulation of the optical intensity breaks the spatio-temporal symmetry of an otherwise spatially symmetric system. This has allowed us to localize a particle in one of the symmetric wells. (c) 2001 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...