Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447933

RESUMO

The article discusses the practical application of the method of electromagnetic non-destructive investigation of austenitic materials. To identify and evaluate deep artificial defects, the sweep-frequency eddy current method with harmonic excitation is used. The objects of interest are the surface electric-discharged machined notches, with a defined geometry, fabricated in a plate with a thickness of 30 mm. An innovative eddy current probe with a separate excitation and detection circuit is used for the investigation. The achieved results clearly demonstrate the robustness and potential of the method, especially for deep defects in thick material. By using the fifth probe in connection with the frequency sweeping of eddy currents, it is possible to reliably detect artificial defects up to 24 ± 0.5 mm deep by using low-frequency excitation signals. An important fact is that the measuring probe does not have to be placed directly above the examined defect. The experimental results achieved are presented and discussed in this paper. The conducted study can serve, for example, as an input database of defect signals with a defined geometry to increase the convergence of learning networks and for the prediction of the geometry of real (fatigue and stress-corrosion) defects.


Assuntos
Placas Ósseas , Eletricidade , Humanos , Bases de Dados Factuais , Fadiga , Aprendizagem
2.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850949

RESUMO

The article's subject is the investigation of electromagnetic fields (EMF) of the microwave frequency band in a typical human living environment, especially in shielded areas. The point of view of electromagnetic field presence in the environment with the rapid increase in the level of the electromagnetic background is currently an essential point concerning population protection against the potential adverse effects of such EMFs. The authors focus on actual measurements, especially in shielded spaces frequently used in everyday life, such as elevator cabins and cars. The goal is a quantitative evaluation of the distribution of specific vector quantities of the EM field and a comparison with the currently valid hygiene standards. Measured values in shielded spaces show elevated levels in contrast to the open space. However, the values do not exceed limits set by considering the thermal effect on living tissues.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Micro-Ondas , Automóveis , Elevadores e Escadas Rolantes
3.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501824

RESUMO

Investigation of the intrinsic magnetic field of austenitic biomaterial specimens after various heat-treatment processes and mechanical deformation is a matter in this study. Both heat-treatment and mechanical deformation influences are under investigation. A new approach incorporates innovative solutions with the goal to increase the resolution of gained signals in contrast to conventional methods. The proposed procedure was tested on real material specimens. A magnetic field sensor (fluxgate type) was used for this purpose. The presented results clearly show that gained signals can be increased when the appropriate probe instrumentation is used, and the characteristics are further mathematically processed.


Assuntos
Materiais Biocompatíveis , Aço Inoxidável , Campos Magnéticos
4.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917589

RESUMO

A capacitive measurement of the biosignals is a very comfortable and unobtrusive way suitable for long-term and wearable monitoring of health conditions. This type of sensing is very susceptible to noise from the surroundings. One of the main noise sources is power-line noise, which acts as a common-mode voltage at the input terminals of the acquisition unit. The origin and methods of noise reduction are described on electric models. Two methods of noise removal are modeled and experimentally verified in the paper. The first method uses a passive capacitive grounding electrode, and the second uses an active capacitive Driven Right Leg (DRL) electrode. The effect of grounding electrode size on noise suppression is experimentally investigated. The increasing electrode area reduces power-line noise: the power of power-line frequency within the measured signal is 70.96 dB, 59.13 dB, and 43.44 dB for a grounding electrode area of 1650 cm2, 3300 cm2, and 4950 cm2, respectively. The capacitive DRL electrode shows better efficiency in common-mode noise rejection than the grounding electrode. When using an electrode area of 1650 cm2, the DRL achieved 46.3 dB better attenuation than the grounding electrode at power-line frequency. In contrast to the grounding electrode, the DRL electrode reduces a capacitive measurement system's financial costs due to the smaller electrode area made of the costly conductive textile.

5.
Sensors (Basel) ; 20(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998312

RESUMO

Solution of inverse problem in eddy-current non-destructive evaluation of material defects is concerned in this study. A new inverse algorithm incorporating three methods is proposed. The wavelet transform of sensed eddy-current responses complemented by the principal component analysis and followed by the neural network classification are employed for this purpose. The goal is to increase the noise robustness of the evaluation. The proposed inverse algorithm is tested using real eddy-current response data gained from artificial electro-discharge machined notches made in austenitic stainless-steel biomaterial. Eddy-current responses due to the material defects are acquired using a newly developed eddy-current probe that senses separately three spatial components of the perturbed electromagnetic field. The presented results clearly show that the error in evaluation of material defect depth using the proposed algorithm is less than 10% even when the signal-to-noise ratio is as high as 10 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...