Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272218

RESUMO

Rhodopsin (Rho) and cone opsins are essential for detection of light. They respond via photoisomerization, converting their Schiff-base-adducted 11-cis-retinylidene chromophores to the all-trans configuration, eliciting conformational changes to activate opsin signaling. Subsequent Schiff-base hydrolysis releases all-trans-retinal, initiating two important cycles that maintain continuous vision-the Rho photocycle and visual cycle pathway. Schiff-base hydrolysis has been thoroughly studied with photoactivated Rho but not with cone opsins. Using established methodology, we directly measured the formation of Schiff-base between retinal chromophores with mammalian visual and nonvisual opsins of the eye. Next, we determined the rate of light-induced chromophore hydrolysis. We found that retinal hydrolysis from photoactivated cone opsins was markedly faster than from photoactivated Rho. Bovine retinal G protein-coupled receptor (bRGR) displayed rapid hydrolysis of its 11-cis-retinylidene photoproduct to quickly supply 11-cis-retinal and re-bind all-trans-retinal. Hydrolysis within bRGR in native retinal pigment epithelium microsomal membranes was >6-times faster than that of bRGR purified in detergent micelles. N-terminal-targeted antibodies significantly slowed bRGR hydrolysis, while C-terminal antibodies had no effect. Our study highlights the much faster photocycle of cone opsins relative to Rho and the crucial role of RGR in chromophore recycling in daylight. By contrast, in our experimental conditions, bovine peropsin did not form pigment in the presence of all-trans-retinal nor with any mono-cis retinal isomers, leaving uncertain the role of this opsin as a light sensor.


Assuntos
Opsinas dos Cones , Opsinas , Retinoides , Animais , Bovinos , Hidrólise , Opsinas/química , Retinaldeído/química , Rodopsina
2.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015730

RESUMO

Adiponectin receptor 1 (ADIPOR1) is a lipid and glucose metabolism regulator that possesses intrinsic ceramidase activity. Mutations of the ADIPOR1 gene have been associated with nonsyndromic and syndromic retinitis pigmentosa. Here, we show that the absence of AdipoR1 in mice leads to progressive photoreceptor degeneration, significant reduction of electroretinogram amplitudes, decreased retinoid content in the retina, and reduced cone opsin expression. Single-cell RNA-Seq results indicate that ADIPOR1 encoded the most abundantly expressed ceramidase in mice and one of the 2 most highly expressed ceramidases in the human retina, next to acid ceramidase ASAH1. We discovered an accumulation of ceramides in the AdipoR1-/- retina, likely due to insufficient ceramidase activity for healthy retina function, resulting in photoreceptor death. Combined treatment with desipramine/L-cycloserine (DC) lowered ceramide levels and exerted a protective effect on photoreceptors in AdipoR1-/- mice. Moreover, we observed improvement in cone-mediated retinal function in the DC-treated animals. Lastly, we found that prolonged DC treatment corrected the electrical responses of the primary visual cortex to visual stimuli, approaching near-normal levels for some parameters. These results highlight the importance of ADIPOR1 ceramidase in the retina and show that pharmacological inhibition of ceramide generation can provide a therapeutic strategy for ADIPOR1-related retinopathy.


Assuntos
Ceramidases/antagonistas & inibidores , DNA/genética , Mutação , Receptores de Adiponectina/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Adiponectina/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
3.
J Proteome Res ; 19(8): 3044-3059, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32538095

RESUMO

Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.


Assuntos
Proteômica , Aranhas , Sequência de Aminoácidos , Animais , Evolução Biológica , Seda/genética , Aranhas/genética , Peçonhas
4.
Amino Acids ; 52(4): 543-553, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32236698

RESUMO

The aim of the current study was to investigate whether doublecortin (DCX), insulin-like growth factor receptor 1 (IGF-1R) and metabotropic glutamate receptor 5 (mGluR5) levels are indeed modified in the aging rat hippocampal individual subareas (rather than total hippocampal tissue as in previous reports) at the protein and mRNA level and whether the methylation status contributes to these changes. Since the aging population is not homogeneous in terms of spatial memory performance, we examined whether changes in DCX, IGF-1R and mGluR5 are linked to cognitive aging. Aged (22 months) male Sprague Dawley rats were trained in the hole-board, a spatial memory task, and were subdivided according to performance to aged impaired and aged unimpaired groups. Age- and memory performance-dependent changes in mRNA steady-state levels, protein levels and DNA methylation status of DCX, IGF-1R and mGluR5 were evaluated by RT-PCR, immunoblotting and bisulfite pyrosequencing. Extending previous findings, we detected decreased DCX protein and mRNA levels in dentate gyrus (DG) of aged animals. IGF-1 signaling is a key event and herein we show that mRNA levels for IGF-1R were unchanged although reduced at the protein level. This finding may simply reflect that these protein levels are regulated at the level of protein synthesis as well as protein degradation. We provide evidence that promoter methylation is not involved in regulation of mRNA and protein levels of DCX, IGF-1R and mGluR5 during aging. Moreover, there was no significant difference between aged rats with impaired and aged rats with unimpaired memory at the protein and mRNA level. Findings propose that changes in the abovementioned protein levels may not be relevant for performance in the spatial memory task used in aged rats.


Assuntos
Hipocampo/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Neuropeptídeos/deficiência , Receptor IGF Tipo 1/deficiência , Envelhecimento/metabolismo , Animais , Cognição , Metilação de DNA , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Masculino , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Neuropeptídeos/análise , Neuropeptídeos/genética , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/análise , Receptor IGF Tipo 1/genética , Receptor de Glutamato Metabotrópico 5/análise , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Memória Espacial
5.
Front Aging Neurosci ; 12: 611572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488384

RESUMO

Cognitive processes require striatal activity. The underlying molecular mechanisms are widely unknown. For this reason the striatal transcriptome of young (YM), aged cognitively impaired (OMB), and unimpaired (OMG) male rats was analyzed. The global comparison of transcripts reveal a higher number of differences between OMG and YM as compared to OMB and YM. Hierarchical clustering detects differences in up- and down-regulated gene clusters in OMG and OMB when compared to YM. In OMG we found more single genes to be specifically regulated in this group than in OMB when compared to young. These genes were considered as cognition specific, whereas genes shared in OMG and OMB were considered as age specific. OMB specific up-regulated genes are related to negative control of cell differentiation and transcription (Hopx), to phagocytosis (Cd202) and cell adhesion (Pcdhb21), whereas down-regulated genes are related to associative learning, behavioral fear response and synaptic transmission (Gabra5). OMG specific up-regulated genes are in the context of maintenance of transcription and estrogen receptor signaling (Padi2, Anxa3), signal transduction [Rassf4, Dock8)], sterol regulation (Srebf1), and complement activity (C4a, C4b). Down-regulated genes are related to lipid oxidation reduction processes (Far2) and positive regulation of axon extension (Islr2). These relations were supported by pathway analysis, which reveals cholesterol metabolism processes in both aged group and cholesterol biosynthesis specifically in OMG; adipogenesis and focal adhesion in OMB. In OMG glucuronidation, estrogen metabolism, inflammatory responses and TGF beta signaling where detected as specific for this group. Signal transduction of the sphingosine-1-phospate-receptor (S1P) receptor was the main pathway difference in the comparison of OMB and OMG with downregulated genes in the first group. This difference could also be observed in the OMB vs. YM comparison but not in the OMG vs. YM analysis. Thus, an up-regulation of cognition related genes could be observed in OMG compared to OMB rats. The S1P pathway discriminated between OMB and OMG as well as between OMB and OMG. Since this pathway has been described as essential for cognitive processes in the striatum of mice, it may, among steroid hormone signaling, significantly contribute to the maintenance of cognitive processes in OMG.

6.
Front Aging Neurosci ; 11: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417400

RESUMO

Similar to humans, the normal aged rat population is not homogeneous in terms of cognitive function. Two distinct subpopulations of aged Sprague-Dawley rats can be identified on the basis of spatial memory performance in the hole-board paradigm. It was the aim of the study to reveal protein changes relevant to aging and spatial memory performance. Aged impaired (AI) and unimpaired (AU) male rats, 22-24 months old were selected from a large cohort of 160 animals; young animals served as control. Enriched synaptosomal fractions from dentate gyrus from behaviorally characterized old animals were used for isobaric tags labeling based quantitative proteomic analysis. As differences in peroxiredoxin 6 (PRDX6) levels were a pronounced finding, PRDX6 levels were also quantified by immunoblotting. AI showed impaired spatial memory abilities while AU performed comparably to young animals. Our study demonstrates substantial quantitative alteration of proteins involved in energy metabolism, inflammation and synaptic plasticity during aging. Moreover, we identified protein changes specifically coupled to memory performance of aged rats. PRDX6 levels clearly differentiated AI from AU and levels in AU were comparable to those of young animals. In addition, it was observed that stochasticity in protein levels increased with age and discriminate between AI and AU groups. Moreover, there was a significantly higher variability of protein levels in AI. PRDX6 is a member of the PRDX family and well-defined as a cystein-1 PRDX that reduces and detoxifies hydroxyperoxides. It is well-known and documented that the aging brain shows increased active oxygen species but so far no study proposed a potential target with antioxidant activity that would discriminate between impaired and unimpaired memory performers. Current data, representing so far the largest proteomics data set in aging dentate gyrus (DG), provide the first evidence for a probable role of PRDX6 in memory performance.

7.
Mol Omics ; 15(4): 256-270, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268449

RESUMO

Orb-weaving spiders can produce different silk fibers, which constitute outstanding materials characterized by their high strength and elasticity. Researchers have tried to reproduce the fibers of these proteins synthetically and/or by using recombinant DNA technology, but only a few of the natural physicochemical and biophysical properties have been obtained to date. Female orb-web-spiders present seven silk-glands, which synthesize the spidroins and a series of other proteins, which interact with the spidroins, resulting in silk fibers with notable physicochemical properties. Despite the recognized importance of the silk-glands for understanding how the fibers are produced and processed, the investigation of these glands is at a nascent stage. In the current study we present the assembled transcriptome of silk-producing glands from the orb-weaving spider Nephila clavipes, as well as develop a large-scale proteomic approach for in-depth analyses of silk-producing glands. The present investigation revealed an extensive repertoire of hitherto undescribed proteins involved in silk secretion and processing, such as prevention of degradation during the silk spinning process, transportation, protection against proteolytic autolysis and against oxidative stress, molecular folding and stabilization, and post-translational modifications. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among three groups of silk-producing organisms - (i) Araneomorphae spiders, (ii) Mygalomorphae spiders, and (iii) silk-producing insects. A common orthologous gene, which was annotated as silk gland factor-3 is present among all species analysed. This protein belongs to a transcription factor family, that is important and related to the development of the silk apparatus synthesis in the silk glands of silk-producing arthropods.


Assuntos
Fibroínas/genética , Seda/genética , Aranhas/genética , Transcriptoma/genética , Animais , Evolução Biológica , Feminino , Fibroínas/metabolismo , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteômica , Seda/biossíntese , Aranhas/metabolismo
8.
Proteomics ; 19(13): e1900094, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31115157

RESUMO

The olfactory conditioning of the bee proboscis extension reflex (PER) is extensively used as a paradigm in associative learning of invertebrates but with limited molecular investigations. To investigate which protein changes are linked to olfactory conditioning, a non-sophisticated conditioning model is applied using the PER in the honeybee (Apis mellifera). Foraging honeybees are assigned into three groups based on the reflex behavior and training: conditioned using 2-octanone (PER-conditioned), and sucrose and water controls. Thereafter, the brain synaptosomal proteins are isolated and analyzed by quantitative proteomics using stable isotope labeling (TMT). Additionally, the complex proteome dataset of the bee brain is generated with a total number of 5411 protein groups, including key players in neurotransmitter signaling. The most significant categories affected during olfactory conditioning are associated with "SNARE interactions in vesicular transport" (BET1 and VAMP7), ABC transporters, and fatty acid degradation pathways.


Assuntos
Abelhas/fisiologia , Encéfalo/fisiologia , Condicionamento Clássico/fisiologia , Olfato/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Marcação por Isótopo , Proteoma/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo
9.
Neurochem Int ; 128: 215-221, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31051212

RESUMO

There is growing evidence that lipids play a fundamental role in neuronal plasticity and learning and memory. Effects of nutrition on brain lipid composition and neuronal functioning are known, but the feeding interventions are often severe and may not reflect nutritional effects below clinical relevance. Therefore, we tested two commercially available rat feeding diets with only moderate differences in the food compositions, a standard diet (gross energy metabolizable 12.8 MJ/kg) and a energy reduced diet (gross energy metabolizable 8.9 MJ/kg) on possible effects upon dentate gyrus lipid composition, spatial learning and memory in a water maze and corticosterone release (blood serum concentrations) in adult male rats. Rats were fed with the standard diet up to an age of 8 weeks. One group was further fed with the standard and another with the energy reduced diet until an age of 5 months. We did not found differences in serum corticosterone levels. We found group differences in a variety of lipids in the hippocampal dentate gyrus.. Most of the lipid levels were lower in energy reduced diets, namely glycerophosphoethanolamines, sphingomyelins and hexosyceramides, whereas some ceramides (Cer18:0 and Cer24:1) and glycerophosphocholines (PC34:3 and PC36:2) were upregulated compared to the standard diet group. The performance in a common reference memory water maze task was not different between groups, however during reversal learning (platform in a different position) after the initial training, the standard diet fed rats learned better and spatial memory was improved compared to the energy reduced diet group. Thus, moderate differences in feeding diets have effects specifically upon spatial cognitive flexibility. Possible relations between differences in lipid composition and cognitive flexibility are discussed.


Assuntos
Restrição Calórica/psicologia , Cognição/fisiologia , Giro Denteado/metabolismo , Metabolismo dos Lipídeos/fisiologia , Aprendizagem em Labirinto/fisiologia , Comportamento Espacial/fisiologia , Animais , Restrição Calórica/tendências , Hipocampo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
10.
Front Mol Neurosci ; 11: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467617

RESUMO

Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes and various mental disorders, including schizophrenia and major depression. A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical deficits consistent with aspects of mental disorders, including changes in the dorsal striatum, an anatomical region critical in the development of behavioral disorders. Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT) littermate control rats was used for synaptosomal preparations and for performing liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics, using isobaric labeling (TMT10plex). Functional enrichment analysis was generated from proteins with level changes. The increase in DISC1 expression leads to changes in proteins and synaptic-associated processes including membrane trafficking, ion transport, synaptic organization and neurodevelopment. Canonical pathway analysis assigned proteins with level changes to actin cytoskeleton, Gαq, Rho family GTPase and Rho GDI, axonal guidance, ephrin receptor and dopamine-DARPP32 feedback in cAMP signaling. DISC1-regulated proteins proposed in the current study are also highly associated with neurodevelopmental and mental disorders. Bioinformatics analyses from the current study predicted that the following biological processes may be activated by overexpression of DISC1, i.e., regulation of cell quantities, neuronal and axonal extension and long term potentiation. Our findings demonstrate that the effects of overexpression of non-mutant DISC1 or its misassembly has profound consequences on protein networks essential for behavioral control. These results are also relevant for the interpretation of previous as well as for the design of future studies on DISC1.

11.
Front Aging Neurosci ; 9: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218006

RESUMO

Fragile X mental retardation protein (FMRP) encoded by Fragile X mental retardation 1 (FMR1) gene is a RNA-binding regulator of mRNA translation, transport and stability with multiple targets responsible for proper synaptic function. Epigenetic silencing of FMR1 gene expression leads to the development of Fragile X syndrome (FXS) that is characterized by intellectual disability and other behavioral problems including autism. In the rat FXS model, the lack of FMRP caused a deficit in hippocampal-dependent memory. However, the hippocampal changes of FMRP in aging rats are not fully elucidated. The current study addresses the changes in FMRP levels in dentate gyrus (DG) from young (17 weeks) and aging (22 months) Sprague - Dawley rats. The aging animal group showed significant decline in spatial reference memory. Protein samples from five rats per each group were analyzed by quantitative proteomic analysis resulting in 153 significantly changed proteins. FMRP showed significant reduction in aging animals which was confirmed by immunoblotting and immunofluorescence microscopy. Furthermore, bioinformatic analysis of the differential protein dataset revealed several functionally related protein groups with individual interactions with FMRP. These include high representation of the RNA translation and processing machinery connected to FMRP and other RNA-binding regulators including CAPRIN1, the members of Pumilio (PUM) and CUG-BP, Elav-like (CELF) family, and YTH N(6)-methyladenosine RNA-binding proteins (YTHDF). The results of the current study point to the important role of FMRP and regulation of RNA processing in the rat DG and memory decline during the aging process.

12.
PLoS One ; 12(7): e0180675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28672041

RESUMO

Brain lipids are integral components of brain structure and function. However, only recent advancements of chromatographic techniques together with mass spectrometry allow comprehensive identification of lipid species in complex brain tissue. Lipid composition varies between the individual areas and the majority of previous reports was focusing on individual lipids rather than a lipidome. Herein, a mass spectrometry-based approach was used to evaluate age-related changes in the lipidome of the rat amygdala obtained from young (3 months) and old (20 months) males of the Sprague-Dawley rat strain. A total number of 70 lipid species with significantly changed levels between the two animal groups were identified spanning four main lipid classes, i.e. glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. These included phospholipids with pleiotropic brain function, such as derivatives of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. The analysis also revealed significant level changes of phosphatidic acid, diacylglycerol, sphingomyelin and ceramide that directly represent lipid signaling and affect amygdala neuronal activity. The amygdala is a crucial brain region for cognitive functions and former studies on rats and humans showed that this region changes its activity during normal aging. As the information on amygdala lipidome is very limited the results obtained in the present study represent a significant novelty and may contribute to further studies on the role of lipid molecules in age-associated changes of amygdala function.


Assuntos
Envelhecimento/metabolismo , Tonsila do Cerebelo/metabolismo , Lipídeos/química , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray
13.
Proteomics Clin Appl ; 10(12): 1264-1268, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27459904

RESUMO

Zebrafish (Danio rerio) is a well-established model organism in developmental biology and disease modeling. In recent years, an increasing amount of studies used zebrafish to analyze the genetic changes underlying various neurological disorders. The brain plasma membrane proteome represents the major subsets of signaling proteins and promising drug targets, but is often understudied due to traditional experimental difficulties including problems with solubility, detergent removal, or low abundance. Here, we report a comprehensive dataset of the proteins identified in the enriched plasma membrane of the zebrafish brain by applying sequential trypsin/chymotrypsin digestion with multidimensional LC-MS/MS. A total number of 97 017 peptide groups corresponding to 9201 proteins were identified. These were annotated in various molecular functions or neurological disorders. The dataset of the current study provides a useful data source for further utilizing zebrafish in basic and clinical neuroscience.


Assuntos
Encéfalo/citologia , Membrana Celular/metabolismo , Proteômica , Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Ontologia Genética
14.
PLoS One ; 11(3): e0150614, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986963

RESUMO

The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.


Assuntos
Gastrópodes/genética , Proteômica , Transcriptoma , Animais , Bases de Dados de Proteínas , Gastrópodes/imunologia , Perfilação da Expressão Gênica , Ontologia Genética , Imunidade Inata , Proteoma/análise , Proteoma/genética , Proteoma/imunologia , Proteômica/métodos , RNA Mensageiro/genética
15.
Behav Brain Res ; 303: 208-17, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26748257

RESUMO

A series of protein kinases and phosphatases (PKPs) have been linked to contextual fear conditioning (cFC) but information is mainly derived from immunochemical studies. It was therefore decided to use an explorative label-free quantitative proteomics approach to concomitantly determine PKPs in hippocampi of mice in the individual phases of cFC. C57BL/6J mice were divided into four groups: three training groups representing the acquisition, consolidation and retrieval phases of cFC and a foot shock control group. Using this approach we identified 32 protein kinases or phosphatases/phosphatase subunits with significantly changed protein levels in one or more training groups as compared to foot shock control. These include members of PKP signalling modules of mitogen-activated protein kinase (MAP3K10, RAF1, KSR2), Ca2+/calmodulin-dependent protein kinase (CaMKIIα, DAPK1), protein kinase C (PRKCD) and protein phosphatases 1, 2A, 2B(3) previously implicated in various learning paradigms. In addition, our analysis showed protein kinases WNK1, LYN, VRK1, ABL1, CDK4, CDKL3, SgK223 and ADCK1, and protein phosphatases PTPRF, ACP1, DNAJC6, SSH2 and UBASH3B that have not been directly linked to fear memory processes so far. Determination of PKPs in the individual cFC phases represents a valuable resource for interpretation of previous and design of future studies on PKPs in memory mechanisms.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
16.
PLoS One ; 8(11): e78010, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244285

RESUMO

Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.


Assuntos
Farmacorresistência Bacteriana/fisiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Proteoma/biossíntese , Telúrio/farmacologia , Antioxidantes/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Dobramento de Proteína/efeitos dos fármacos , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...