Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(20): 207001, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501078

RESUMO

By employing a series of experimental techniques, we provide clear evidence that CaPtAs represents a rare example of a noncentrosymmetric superconductor which simultaneously exhibits nodes in the superconducting gap and broken time-reversal symmetry (TRS) in its superconducting state (below T_{c}≈1.5 K). Unlike in fully gapped superconductors, the magnetic penetration depth λ(T) does not saturate at low temperatures, but instead it shows a T^{2} dependence, characteristic of gap nodes. Both the superfluid density and the electronic specific heat are best described by a two-gap model comprising of a nodeless gap and a gap with nodes, rather than by single-band models. At the same time, zero-field muon-spin relaxation spectra exhibit increased relaxation rates below the onset of superconductivity, implying that TRS is broken in the superconducting state of CaPtAs, hence indicating its unconventional nature. Our observations suggest CaPtAs to be a new remarkable material that links two apparently disparate classes, that of TRS-breaking correlated magnetic superconductors with nodal gaps and the weakly correlated noncentrosymmetric superconductors with broken TRS, normally exhibiting only a fully gapped behavior.

2.
Nat Commun ; 9(1): 4622, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397192

RESUMO

The manifestation of Weyl fermions in strongly correlated electron systems is of particular interest. We report evidence for Weyl fermions in the heavy fermion semimetal YbPtBi from electronic structure calculations, angle-resolved photoemission spectroscopy, magnetotransport and calorimetric measurements. At elevated temperatures where 4f-electrons are localized, there are triply degenerate points, yielding Weyl nodes in applied magnetic fields. These are revealed by a contribution from the chiral anomaly in the magnetotransport, which at low temperatures becomes negligible due to the influence of electronic correlations. Instead, Weyl fermions are inferred from the topological Hall effect, which provides evidence for a Berry curvature, and a cubic temperature dependence of the specific heat, as expected from the linear dispersion near the Weyl nodes. The results suggest that YbPtBi is a Weyl heavy fermion semimetal, where the Kondo interaction renormalizes the bands hosting Weyl points. These findings open up an opportunity to explore the interplay between topology and strong electronic correlations.

3.
Phys Rev Lett ; 121(25): 257002, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608781

RESUMO

To trace the origin of time-reversal symmetry breaking (TRSB) in Re-based superconductors, we performed comparative muon-spin rotation and relaxation (µSR) studies of superconducting noncentrosymmetric Re_{0.82}Nb_{0.18} (T_{c}=8.8 K) and centrosymmetric Re (T_{c}=2.7 K). In Re_{0.82}Nb_{0.18}, the low-temperature superfluid density and the electronic specific heat evidence a fully gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling. In both Re_{0.82}Nb_{0.18} and pure Re, the spontaneous magnetic fields revealed by zero-field µSR below T_{c} indicate time-reversal symmetry breaking and thus unconventional superconductivity. The concomitant occurrence of TRSB in centrosymmetric Re and noncentrosymmetric ReT (T=transition metal), yet its preservation in the isostructural noncentrosymmetric superconductors Mg_{10}Ir_{19}B_{16} and Nb_{0.5}Os_{0.5}, strongly suggests that the local electronic structure of Re is crucial for understanding the TRSB superconducting state in Re and ReT. We discuss the superconducting order parameter symmetries that are compatible with the experimental observations.

4.
Sci Rep ; 7(1): 7338, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779079

RESUMO

We investigated the anisotropic magnetic properties of CePd2As2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2Si2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large c-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure |±5/2〉 CEF ground-state doublet with the dominantly |±3/2〉 and the |±1/2〉 doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at T N = 14.7 K with the crystallographic c-direction being the magnetic easy-axis. The magnetic entropy gain up to T N reaches almost R ln 2 indicating localised 4 f-electron magnetism without significant Kondo-type interactions. Below T N , the application of a magnetic field along the c-axis induces a metamagnetic transition from the AFM to a field-polarised phase at µ 0 H c0 = 0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.

5.
Rep Prog Phys ; 80(3): 036501, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28072583

RESUMO

In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

6.
Rep Prog Phys ; 79(9): 094503, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27533524

RESUMO

Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

7.
Phys Rev Lett ; 117(2): 027001, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447519

RESUMO

The nature of the pairing states of superconducting LaNiC_{2} and LaNiGa_{2} has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a nonunitary triplet pairing state. However, all the allowed nonunitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC_{2}. Here we probe the gap symmetry of LaNiGa_{2} by measuring the London penetration depth, specific heat, and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa_{2}, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wave function has a triplet spin component but isotropic even parity gap symmetry, yet the overall wave function remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results.

8.
Sci Rep ; 5: 17608, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626431

RESUMO

We report measurements of the physical properties and electronic structure of the hexagonal compounds Yb2Ni12Pn7 (Pn = P, As) by measuring the electrical resistivity, magnetization, specific heat and partial fluorescence yield x-ray absorption spectroscopy (PFY-XAS). These demonstrate a crossover upon reducing the unit cell volume, from an intermediate valence state in Yb2Ni12As7 to a heavy-fermion paramagnetic state in Yb2Ni12P7, where the Yb is nearly trivalent. Application of pressure to Yb2Ni12P7 suppresses TFL, the temperature below which Fermi liquid behavior is recovered, suggesting the presence of a quantum critical point (QCP) under pressure. However, while there is little change in the Yb valence of Yb2Ni12P7 up to 30 GPa, there is a strong increase for Yb2Ni12As7 under pressure, before a near constant value is reached. These results indicate that any magnetic QCP in this system is well separated from strong valence fluctuations. The pressure dependence of the valence and lattice parameters of Yb2Ni12As7 are compared and at 1 GPa, there is an anomaly in the unit cell volume as well as a change in the slope of the Yb valence, indicating a correlation between structural and electronic changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...