Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 317: 115314, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617859

RESUMO

While the concept of environmental sustainability has steadily grown over the past thirty years, little progress has been made in unifying the efforts of the entities most involved: society, the environment, the economy, and governmental policy. This synthesis integrates across disciplines to outline the need for a harmonized sustainability model to align disparate environmental objectives. Specifically, this study highlights the disconnect between policy and capitalistic economies regarding environmental sustainability. We then provide a framework for an updated sustainability model and offer pathways toward an improved state of environmental sustainability. Notable contributions include the development of a dynamic, harmonized sustainability model derived from basic supply and demand curves that functions for both the consumption and disposal of resources at multiple scales.


Assuntos
Conservação dos Recursos Naturais , Políticas
2.
Sci Data ; 8(1): 182, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272376

RESUMO

Inland fisheries and their freshwater habitats face intensifying effects from multiple natural and anthropogenic pressures. Fish harvest and biodiversity data remain largely disparate and severely deficient in many areas, which makes assessing and managing inland fisheries difficult. Expert knowledge is increasingly used to improve and inform biological or vulnerability assessments, especially in data-poor areas. Integrating expert knowledge on the distribution, intensity, and relative influence of human activities can guide natural resource management strategies and institutional resource allocation and prioritization. This paper introduces a dataset summarizing the expert-perceived state of inland fisheries at the basin (fishery) level. An electronic survey distributed to professional networks (June-September 2020) captured expert perceptions (n = 536) of threats, successes, and adaptive capacity to fisheries across 93 hydrological basins, 79 countries, and all major freshwater habitat types. This dataset can be used to address research questions with conservation relevance, including: demographic influences on perceptions of threat, adaptive capacities for climate change, external factors driving multi-stressor interactions, and geospatial threat assessments.


Assuntos
Pesqueiros , Peixes , Animais , Mudança Climática , Conservação dos Recursos Naturais , Atividades Humanas , Humanos , Conhecimento
3.
Proc Natl Acad Sci U S A ; 117(47): 29419-29421, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139565

RESUMO

The COVID-19 pandemic has led to environmental recovery in some ecosystems from a global "anthropause," yet such evidence for natural resources with extraction or production value (e.g., fisheries) is limited. This brief report provides a data-driven global snapshot of expert-perceived impacts of COVID-19 on inland fisheries. We distributed an online survey assessing perceptions of inland fishery pressures in June and July 2020 to basin-level inland fishery experts (i.e., identified by the Food and Agriculture Organization of the United Nations across the global North and South); 437 respondents from 79 countries addressed 93 unique hydrological basins, accounting for 82.1% of global inland fish catch. Based on the responses analyzed against extrinsic fish catch and human development index data, pandemic impacts on inland fisheries 1) add gradation to the largely positive environmental narrative of the global pandemic and 2) identify that basins of higher provisioning value are perceived to experience greater fishery pressures but may have limited compensatory capacity to mitigate COVID-19 impacts along with negative pressures already present.


Assuntos
COVID-19/economia , Pesqueiros/economia , Pandemias/economia , COVID-19/epidemiologia , Pesqueiros/estatística & dados numéricos , Insegurança Alimentar , Humanos
4.
J Environ Manage ; 217: 677-689, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654971

RESUMO

Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Urbanização , Cidades , Michigan , Solo
5.
Sci Total Environ ; 566-567: 988-1001, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344509

RESUMO

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

6.
Ground Water ; 53(6): 859-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408169

RESUMO

While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits.


Assuntos
Recuperação e Remediação Ambiental/métodos , Rios , Movimentos da Água , Hidrologia/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...