Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 41(28): 3745-3755, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31084529

RESUMO

A new synthetisis method of Cu-doped ZnO nanoparticles is presented in this work, this novel approach allow one to produce Zinc oxide nanocristal owing to a modified Polyol process that makes use of triethyleneglycol (TREG) as a solvent. The structure and morphology of the nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption study, UV-Vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy. The lightly doped Zn1-xCuxO photocatalysts consisted in a novel nanorods structure of Zn0.9990Cu0.0010O nanoparticles. Taking the photocatalytic degradation of diuron under solar light as liquid phase test reaction, the lightly doped Zn0.9990Cu0.0010O nanorods photocatalysts showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The apparent rate constant value of Zn0.9990Cu0.0010O was 22 times higher than that of pure ZnO. In order to study the environmental risk of Cu-ZnO, clams Ruditapes decussatus were exposed to Cu-ZnOC1 = 0.5 mg/L, Cu-ZnOC2 = 1 mg/L and Cu-ZnO C3 = 5 mg/L. Catalase (CAT) activities, malondialdehyde (MDA) content and acetylcholinesterase (AChE) activity were determined in gills and digestive gland of treated and untreated clams. Thus, no significant effects were detected in the gills of exposed clams after 7 days compared to control. Thus, MDA level and CAT activity showed significant differences in digestive glands of groups treated by the highest concentration of Cu-ZnO NPs compared to the control. No adverse effects on AChE activity was detected after Cu-ZnO NPs exposure. These results demonstrated that, although Cu-ZnO NPs is not acutely toxic to Ruditapes decussatus, it does exert oxidative stress on clams. These results are encouraging for the Cu-ZnO NPs use in variety of applications due to its high photocatalytic and low environmental toxicity.


Assuntos
Nanopartículas Metálicas , Nanotubos , Óxido de Zinco , Animais , Catálise , Brânquias , Nanopartículas Metálicas/toxicidade , Difração de Raios X , Óxido de Zinco/toxicidade
2.
Aquat Toxicol ; 202: 97-104, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30014987

RESUMO

The increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_0.03 and Au_0.045) in 1.3-propandiol with polyvinyl-pyrrolidone K30 (PVPK30) as capping agent using polyol process. Shape, size and optical properties of the particles could be tuned by changing the molar ratio of PVP K30 to metal salts. The anisotropy in nanoparticles shape shows strong localized surface plasmon resonance (SPR) in the near infrared region of the electromagnetic spectrum. Environmental impact of Oct-AuNPs was determined in the marine bivalve, Ruditapes decussatus exposed to different concentrations of Au_0.03 and Au_0.045. The dynamic light scattering showed the stability and resistance of Au_0.03 and Au_0.045 in the natural seawater. No significant modification in vg-like proteins, MDA level and enzymatic activities were observed in treated clams with Au_0.03 even at high concentration. In contrast, Au_0.045 induced superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, in a concentration dependent manner indicating defense against oxidative stress. Enhanced lipid peroxidation represented by malondialdehyde content confirmed oxidative stress of Au_0.045 at high concentration. These results highlight the importance of the physical form of nanomaterials on their interactions with marine organisms and provide a useful guideline for future use of Oct-AuNPs. In addition, Vitellogenin is shown not to be an appropriate biomarker for Oct-AuNPs contamination even at high concentration. We further show that Oct-AuNPs exhibit an important antioxidant response without inducing estrogenic disruption.


Assuntos
Bivalves/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Bivalves/metabolismo , Catalase/metabolismo , Feminino , Glutationa Transferase/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ressonância de Plasmônio de Superfície , Vitelogeninas/metabolismo , Poluentes Químicos da Água/química
3.
Environ Sci Pollut Res Int ; 24(18): 15622-15633, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28523617

RESUMO

We report on the facile and low-temperature one-pot chemical synthesis of lightly doped Zn1-x Cu x O and hybrid Au-Zn1-x Cu x O photocatalysts with low Cu molar content (0 < x < 0.7%) using 1,3-propanediol polyol simultaneously as solvent, reducing and a stabilizing agent, without any final thermal treatment. The photocatalysts have been characterized by X-ray diffraction, N2 adsorption study, UV-vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy, and transmission electron microscopy. The lightly doped hybrid Au-Zn1-x Cu x O photocatalysts consisted in faceted quasi-spherical large-size Au nanoparticle cores surrounded by closely packed small-size Zn1-x Cu x O nanoparticles. Taking the photocatalytic degradation of Diuron under solar light as liquid-phase test reaction, the lightly doped Au-Zn1-x Cu x O hybrid photocatalysts with optimized x = 0.09% Cu content showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The observed 16-fold higher degradation rate constant resulted jointly from the light doping of ZnO with Cu to form Zn1-x Cu x O photocatalyst and further from the addition of gold nanoparticles allowing interfacial oxide-to-metal electron transfer within the hybrid Au-Zn1-x Cu x O photocatalyst.


Assuntos
Cobre/química , Oxigênio/química , Catálise , Luz , Propilenoglicóis , Prata , Difração de Raios X , Zinco
4.
Arch Environ Contam Toxicol ; 68(3): 510-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25392153

RESUMO

Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated in Lemna gibba plants exposed for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) at 0, 12.5, 25, 50, 100, 200 or 400 µg mL(-1). At < 400 µg mL(-1) of SPION exposure, toxicity was indicated by decrease of chlorophyll content, deterioration of photosystem II (PSII) functions, strong production of reactive oxygen species (ROS), and inhibition of growth rate based on fresh weight (52-59 %) or frond number (32-49 %). The performance index of PSII activity was the most sensitive biomarker of PSII functions and decreased by 83, 86, and 79 % for SPION-1, SPION-2, and SPION-3, respectively. According to the change of these biomarkers, the exposure of SPION suspensions to L. gibba caused several alterations to the entire plant cellular system, which may come from both the uptake of nanoparticles and metal ions in the soluble fraction. Our results, based on the change of several biomarkers, showed that these SPION have a complex toxic mode of action on the entire plant system and therefore affects its viability. Therefore, the plant model L. gibba was shown to be a sensitive bioindicator of SPION cellular toxicity and thus can be used in the development of a laboratory bioassay toxicity testing.


Assuntos
Araceae/efeitos dos fármacos , Compostos Férricos/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...