Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(1): 215-230, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36330798

RESUMO

Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.


Assuntos
Ecossistema , Tartarugas , Animais , Biomassa , Peixes , Carbono
2.
Sci Total Environ ; 772: 145520, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770872

RESUMO

Nearshore biogenic habitats are known to trap sediments, and may therefore also accumulate biofouled, non-buoyant microplastics. Using a current-generating field flume (TiDyFLOW), we experimentally assessed the mechanisms of microplastic trapping of two size classes, 0.5 mm and 2.5 mm particle size, by three contrasting types of biogenic habitats: 1) seagrasses, 2) macroalgae, and 3) scleractinian corals. Results showed that benthic organisms with a complex architecture and rough surface - such as hard corals - trap the highest number of microplastics in their aboveground structure. Sediment was however the major microplastic sink, accumulating 1 to 2 orders of magnitude more microplastics than the benthic structure. Microplastic accumulation in the sediment could be explained by near-bed turbulent kinetic energy (TKE), indicating that this is governed by the same hydrodynamic processes leading to sediment trapping. Thus, the most valuable biogenic habitats in terms of nursery and coastal protection services also have the highest capacity of accumulating microplastics in their sediments. A significantly larger fraction of 0.5 mm particles was trapped in the sediment compared to 2.5 mm particles, because especially the smaller microplastics are entrained into the sediment. Present observations contribute to explaining why especially microplastics smaller than 1 mm are missing in surface waters.

3.
Vaccine ; 29(51): 9417-22, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21864627

RESUMO

Infection with dengue virus is a major public health problem in the Asia-Pacific region and throughout tropical and sub-tropical regions of the world. Vaccination represents a major opportunity to control dengue and several candidate vaccines are in development. Experts in dengue and in vaccine introduction gathered for a two day meeting during which they examined the challenges inherent to the introduction of a dengue vaccine into the national immunisation programmes of countries of the Asia-Pacific. The aim was to develop a series of recommendations to reduce the delay between vaccine licensure and vaccine introduction. Major recommendations arising from the meeting included: ascertaining and publicising the full burden and cost of dengue; changing the perception of dengue in non-endemic countries to help generate global support for dengue vaccination; ensuring high quality active surveillance systems and diagnostics; and identifying sustainable sources of funding, both to support vaccine introduction and to maintain the vaccination programme. The attendees at the meeting were in agreement that with the introduction of an effective vaccine, dengue is a disease that could be controlled, and that in order to ensure a vaccine is introduced as rapidly as possible, there is a need to start preparing now.


Assuntos
Vacinas contra Dengue/administração & dosagem , Dengue/prevenção & controle , Programas de Imunização , Ásia , Congressos como Assunto , Dengue/tratamento farmacológico , Vírus da Dengue/imunologia , Diretrizes para o Planejamento em Saúde , Humanos , Programas de Imunização/economia , Saúde Pública , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...