Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 836: 137874, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38857696

RESUMO

Clusterin is a secreted glycoprotein that participates in multiple physiological processes through its chaperon function. In Alzheimer's disease, the brain functions under an increased oxidative stress condition that causes an elevation of protein oxidation, resulting in enhanced pathology. Accordingly, it is important to determine the type of human brain cells that are mostly prone to methionine oxidation in Alzheimer's disease and specifically monitoring the methionine-oxidation levels of clusterin in human and mice brains and its effect on clusterin's function. We analyzed the level of methionine sulfoxide (MetO)-clusterin in these brains, using a combination of immunoprecipitation and Western-blott analyses. Also, we determine the effect of methionine oxidation on clusterin ability to bind beta-amyloid, in vitro, using calorimetric assay. Our results show that human neurons and astrocytes of Alzheimer's disease brains are mostly affected by methionine oxidation. Moreover, MetO-clusterin levels are elevated in postmortem Alzheimer's disease human and mouse brains in comparison to controls. Finally, oxidation of methionine residues of purified clusterin reduced its binding efficiency to beta-amyloid. In conclusion, we suggest that methionine oxidation of brain-clusterin is enhanced in Alzheimer's disease and that this oxidation compromises its chaperon function, leading to exacerbation of beta-amyloid's toxicity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Encéfalo , Clusterina , Metionina , Oxirredução , Clusterina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Metionina/metabolismo , Metionina/análogos & derivados , Humanos , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Astrócitos/metabolismo , Camundongos , Neurônios/metabolismo , Ligação Proteica , Masculino , Idoso
2.
Genes Brain Behav ; 22(6): e12861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519035

RESUMO

Death of a loved one is recognized as one of life's greatest stresses, and 10%-20% of bereaved individuals will experience a complicated or prolonged grieving period that is characterized by intense yearning for the deceased. The monogamous prairie vole (Microtus ochrogaster) is a rodent species that forms pair bonds between breeding partners and has been used to study the neurobiology of social behaviors and isolation. Male prairie voles do not display distress after isolation from a familiar, same-sex conspecific; however, separation from a bonded female partner increases emotional, stress-related, and proximity-seeking behaviors. Here, we tested the investigatory response of male voles to partner odor during a period of social loss. We found that males who lost their partner spent significantly more time investigating partner odor but not non-partner social odor or food odor. Bachelor males and males in intact pairings did not respond uniquely to any odor. Furthermore, we examined dopamine (DA) receptor mRNA expression in the anterior insula cortex (aIC), nucleus accumbens (NAc), and anterior cingulate (ACC), regions with higher activation in grieving humans. While we found some effects of relationship type on DRD1 and DRD2 expression in some of these regions, loss of a high-quality opposite-sex relationship had a significant effect on DA receptor expression, with pair-bonded/loss males having higher expression in the aIC and ACC compared with pair-bonded/intact and nonbonded/loss males. Together, these data suggest that both relationship type and relationship quality affect reunion-seeking behavior and motivational neurocircuits following social loss of a bonded partner.


Assuntos
Dopamina , Pradaria , Humanos , Animais , Masculino , Feminino , Dopamina/metabolismo , Sistema Límbico/metabolismo , Núcleo Accumbens/metabolismo , Comportamento Social , Arvicolinae/genética
4.
Front Behav Neurosci ; 16: 846315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464141

RESUMO

In social species such as humans, non-human primates, and even many rodent species, social interaction and the maintenance of social bonds are necessary for mental and physical health and wellbeing. In humans, perceived isolation, or loneliness, is not only characterized by physical isolation from peers or loved ones, but also involves negative perceptions about social interactions and connectedness that reinforce the feelings of isolation and anxiety. As a complex behavioral state, it is no surprise that loneliness and isolation are associated with dysfunction within the ventral striatum and the limbic system - brain regions that regulate motivation and stress responsiveness, respectively. Accompanying these neural changes are physiological symptoms such as increased plasma and urinary cortisol levels and an increase in stress responsivity. Although studies using animal models are not perfectly analogous to the uniquely human state of loneliness, studies on the effects of social isolation in animals have observed similar physiological symptoms such as increased corticosterone, the rodent analog to human cortisol, and also display altered motivation, increased stress responsiveness, and dysregulation of the mesocortical dopamine and limbic systems. This review will discuss behavioral and neuropsychological components of loneliness in humans, social isolation in rodent models, and the neurochemical regulators of these behavioral phenotypes with a neuroanatomical focus on the corticostriatal and limbic systems. We will also discuss social loss as a unique form of social isolation, and the consequences of bond disruption on stress-related behavior and neurophysiology.

5.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453459

RESUMO

The brain during Alzheimer's disease (AD) is under severe oxidative attack by reactive oxygen species that may lead to methionine oxidation. Oxidation of the sole methionine (Met35) of beta-amyloid (Aß), and possibly methionine residues of other extracellular proteins, may be one of the earliest events contributing to the toxicity of Aß and other proteins in vivo. In the current study, we immunized transgenic AD (APP/PS1) mice at 4 months of age with a recombinant methionine sulfoxide (MetO)-rich protein from Zea mays (antigen). This treatment induced the production of anti-MetO antibody in blood-plasma that exhibits a significant titer up to at least 10 months of age. Compared to the control mice, the antigen-injected mice exhibited the following significant phenotypes at 10 months of age: better short and long memory capabilities; reduced Aß levels in both blood-plasma and brain; reduced Aß burden and MetO accumulations in astrocytes in hippocampal and cortical regions; reduced levels of activated microglia; and elevated antioxidant capabilities (through enhanced nuclear localization of the transcription factor Nrf2) in the same brain regions. These data collected in a preclinical AD model are likely translational, showing that active immunization could give a possibility of delaying or preventing AD onset. This study represents a first step toward the complex way of starting clinical trials in humans and conducting the further confirmations that are needed to go in this direction.

6.
Front Neurosci ; 15: 748431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720866

RESUMO

Complex social behaviors are governed by a neural network theorized to be the social decision-making network (SDMN). However, this theoretical network is not tested on functional grounds. Here, we assess the organization of regions in the SDMN using c-Fos, to generate functional connectivity models during specific social interactions in a socially monogamous rodent, the prairie voles (Microtus ochrogaster). Male voles displayed robust selective affiliation toward a female partner, while exhibiting increased threatening, vigilant, and physically aggressive behaviors toward novel males and females. These social interactions increased c-Fos levels in eight of the thirteen brain regions of the SDMN. Each social encounter generated a distinct correlation pattern between individual brain regions. Thus, hierarchical clustering was used to characterize interrelated regions with similar c-Fos activity resulting in discrete network modules. Functional connectivity maps were constructed to emulate the network dynamics resulting from each social encounter. Our partner functional connectivity network presents similarities to the theoretical SDMN model, along with connections in the network that have been implicated in partner-directed affiliation. However, both stranger female and male networks exhibited distinct architecture from one another and the SDMN. Further, the stranger-evoked networks demonstrated connections associated with threat, physical aggression, and other aversive behaviors. Together, this indicates that distinct patterns of functional connectivity in the SDMN can be detected during select social encounters.

7.
Neuropharmacology ; 198: 108770, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461067

RESUMO

Social anxiety disorder (SAD) is a prevalent mental illness in both men and women, but current treatment approaches with selective serotonin reuptake inhibitors (SSRI) have limited success. The neuropeptide oxytocin (OXT) has become a therapeutic target due to its prosocial and anxiolytic effects. Nevertheless, no research has focused on the impact of chronic OXT treatment in animal models of SAD. Social defeat stress is an animal model of social conflict that reliably induces a social avoidance phenotype, reflecting symptoms observed in individuals suffering from SAD. Here, we used the socially monogamous prairie vole, which exhibits aggressive behavior in both sexes, to examine the effects of OXT and SSRI treatment following social defeat stress in males and females. Defeated voles became avoidant in unfamiliar social situations as early as one day after defeat experience, and this phenotype persisted for at least eight weeks. OXT receptor (OXTR) binding in mesocorticolimbic and paralimbic regions was reduced in defeated females during the eight-week recovery period. In males, serotonin 1A receptor binding was decreased in the basolateral amygdala and dorsal raphe nucleus starting at one week and four weeks post-defeat, respectively. Chronic intranasal treatment with OXT had a negative effect on sociability and mesolimbic OXTR binding in non-defeated females. However, chronic intranasal OXT promoted social engagement and increased mesolimbic OXTR binding in defeated females but not males. SSRI treatment led to only modest effects. This study identifies a sex-specific and stress-dependent function of intranasal OXT on mesolimbic OXTR and social behaviors.


Assuntos
Arvicolinae/fisiologia , Ocitocina/administração & dosagem , Ocitocina/uso terapêutico , Comportamento Social , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Administração Intranasal , Agressão/efeitos dos fármacos , Animais , Ansiedade , Feminino , Sistema Límbico/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Ocitocina/metabolismo
9.
Auton Neurosci ; 235: 102834, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34186274

RESUMO

Chronic sympathetic nervous system (SNS) overactivity, characteristic of heart failure (HF) with reduced ejection fraction (HFrEF), is associated with poor prognosis and contributes to increased mortality risk. Sacubitril-valsartan is a recently approved, first-in-class, angiotensin receptor neprilysin inhibitor (ARNI) drug that markedly reduces the risks of death from cardiovascular causes and hospitalization for HF in patients with HFrEF, but the physiological mechanisms underlying these benefits are not fully understood. This single-arm, open-label, prospective study sought to test the hypothesis that short-term treatment with sacubitril-valsartan reduces SNS activity, measured directly via muscle sympathetic nerve activity (MSNA), in patients with HFrEF. MSNA, heart rate (HR), and arterial blood pressure (BP) were assessed in stable Class II and III patients with HFrEF (n = 9, 69 ± 8 yrs.; 28.6 ± 3.6 kg/m2) on contemporary, guideline-directed medical treatment who were subsequently started on sacubitril-valsartan. These measurements were repeated after two months of treatment with sacubitril-valsartan. Sacubitril-valsartan reduced MSNA burst frequency (baseline: 43 ± 10 bursts/min; 2-month: 36 ± 10 bursts/min, p = 0.05) and burst incidence (baseline: 68 ± 16 bursts/100 heartbeats; 2-month: 55 ± 16 bursts/100 heartbeats, p = 0.02), while HR and BP were unchanged following the treatment (p > 0.05). These preliminary findings provide new evidence regarding the ability of sacubitril-valsartan to rapidly reduce SNS activity in patients with HFrEF, suggesting the presence of a novel sympathoinhibitory effect of this new drug class.


Assuntos
Insuficiência Cardíaca , Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo , Combinação de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Projetos Piloto , Estudos Prospectivos , Volume Sistólico , Resultado do Tratamento , Valsartana
10.
J Appl Physiol (1985) ; 130(1): 256-268, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211601

RESUMO

The Prospective comparison of ARNI with angiotensin-converting enzyme inhibitor to Determine Impact on Global Mortality and morbidity in Heart Failure trial identified a marked reduction in the risk of death and hospitalization for heart failure in patients with heart failure with reduced ejection fraction (HFrEF) treated with sacubitril-valsartan (trade name Entresto), but the physiological processes underpinning these improvements are unclear. We tested the hypothesis that treatment with sacubitril-valsartan improves peripheral vascular function, functional capacity, and inflammation in patients with HFrEF. We prospectively studied patients with HFrEF (n = 11, 10 M/1 F, left ventricular ejection fraction = 27 ± 8%) on optimal, guideline-directed medical treatment who were subsequently prescribed sacubitril-valsartan (open-label, uncontrolled, and unblinded). Peripheral vascular function [brachial artery flow-mediated dilation (FMD, conduit vessel function) and reactive hyperemia (RH, microvascular function)], functional capacity [six-minute walk test (6MWT) distance], and the proinflammatory biomarkers tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were obtained at baseline and at 1, 2, and 3 mo of treatment. %FMD improved after 1 mo of treatment, and this favorable response persisted for months 2 and 3 (baseline: 3.25 ± 1.75%; 1 mo: 5.23 ± 2.36%; 2 mo: 5.81 ± 1.79%; 3 mo: 6.35 ± 2.77%), whereas RH remained unchanged. 6MWT distance increased at months 2 and 3 (baseline: 420 ± 92 m; 1 mo: 436 ± 98 m; 2 mo: 465 ± 115 m; 3 mo: 460 ± 110 m), and there was a sustained reduction in TNF-α (baseline: 2.38 ± 1.35 pg/mL; 1 mo: 2.06 ± 1.52 pg/mL; 2 mo: 1.95 ± 1.34 pg/mL; 3 mo: 1.92 ± 1.37 pg/mL) and a reduction in IL-18 at month 3 (baseline: 654 ± 150 pg/mL; 1 mo: 595 ± 140 pg/mL; 2 mo: 601 ± 176 pg/mL; 3 mo: 571 ± 127 pg/mL). This study provides new evidence for the potential of this new drug class to improve conduit vessel function, functional capacity, and inflammation in patients with HFrEF.NEW & NOTEWORTHY We observed an approximately twofold improvement in conduit vessel function (brachial artery FMD), increased functional capacity (6MWT distance), and a reduction in inflammation (TNF-α and IL-18) following 3 mo of sacubitril-valsartan therapy. These findings provide important new information concerning the physiological mechanisms by which this new drug class provokes favorable changes in HFrEF pathophysiology.


Assuntos
Insuficiência Cardíaca , Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Combinação de Medicamentos , Humanos , Inflamação , Estudos Prospectivos , Volume Sistólico , Tetrazóis , Resultado do Tratamento , Valsartana , Função Ventricular Esquerda
11.
Front Mol Neurosci ; 13: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390799

RESUMO

Social recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation.

12.
Psychoneuroendocrinology ; 113: 104542, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31862611

RESUMO

Social interaction with unfamiliar individuals is necessary for species-preserving behaviors such as finding mates and establishing social groups. However, social conflict is a potential negative outcome to interaction with a stranger that can be distressing enough to cause an individual to later avoid interactions with other unfamiliar conspecifics. Unfortunately, stress research using a prominent model of social conflict, social defeat stress, has largely omitted female subjects. This has left a void in the literature regarding social strain on female stress biology and adequate comparison of the effect of sex in stress pathways. The prairie vole (Microtus ochrogaster) exhibits aggressive behavior in both sexes, making voles an attractive candidate to model social defeat in both sexes. This study sought to establish a model of social defeat stress in both male and female prairie voles, characterize behavioral changes in response to this stressor, and investigate the role of dopamine signaling in the response to social defeat stress. Defeated male and female prairie voles displayed social avoidance as well as an increase in the level of dopamine receptor D1 (DRD1) in the medial amygdala (MeA). Pharmacological manipulation of DRD1 signaling in the MeA revealed that increased DRD1 signaling is sufficient to induce a social avoidant state, and could be a necessary component in the defeat-induced social avoidance response. These findings provide the prairie vole as a model of social defeat in both sexes, and implicate the MeA in avoidance of unfamiliar conspecifics after a distressing social encounter.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Receptores de Dopamina D1/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Arvicolinae , Comportamento Animal/fisiologia , Feminino , Masculino , Receptores de Dopamina D1/fisiologia , Comportamento Social , Derrota Social , Estresse Psicológico/fisiopatologia
13.
J Biol Methods ; 6(3): e116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453263

RESUMO

Agouti-related peptide (AgRP) neurons of the hypothalamus play a role in hunger-triggered food intake, stability of body weight, and long-term energy balance. A recent study showed that activation of the Gs-linked G protein-coupled receptors (GCPR) expressed by hypothalamic AgRP neurons promotes a sustained increase in food intake. Enhanced AgRP release has been the postulated underlying mechanism. Here, we confirmed that activation of Gs-coupled receptors expressed by AgRP neurons in the arcuate nucleus (ARC) of the hypothalamus, which is the primary brain region for the synthesis and release of AgRP, leads to increased release of AgRP in the paraventricular nucleus of the hypothalamus (PVN). We were unable to confirm changes in AgRP expression or intracellular content using traditional histological techniques. Thus, we developed an assay to measure AgRP in the extracellular fluid in the brain using large molecular weight cut-off microdialysis probes. Our technique enables assessment of brain AgRP pharmacokinetics under physiological conditions and in response to specific pharmacological interventions designed to modulate AgRP signaling.

14.
Pharmacol Res ; 146: 104324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31238093

RESUMO

Intranasal delivery of oxytocin (Oxt) has been identified as a potential therapeutic to target human conditions characterized by social deficits, yet the ability of this administrative route to deliver to the brain is unconfirmed. Oxt knockout (Oxt KO) and wildtype C57BL/6 J male mice received Oxt (12 µg total amount) either by nasal or intraperitoneal administration. Oxt concentrations were monitored for 2 h after administration in circulation via a jugular vein catheter and in the brain by two intracerebral microdialysis probes. Group sizes varied from 4 to 7 mice (n = 22 total). We document for the first time that Oxt applied to the nasal mucosa after nasal administration is delivered to the extracellular fluid in the brain. After nasal application, Oxt concentrations in circulation and in the extracellular fluid of the amygdala and, to an extent, the dorsal hippocampus, rose within the first 30 min and remained elevated for the subsequent hour. These findings were confirmed in an Oxt KO mouse line, establishing that the circulating and brain Oxt elevations derive from the administered dose. Interestingly, the pharmacokinetics of Oxt were slightly biased to the brain after nasal administration and to the periphery following intraperitoneal injection. No change in vasopressin levels was detected. These findings have stimulating implications for the interpretation of various behavioral and physiological effects described in animal and human studies after nasal administration of Oxt and provide the pharmacokinetics necessary to develop this drug delivery route for therapeutic purposes.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipocampo/metabolismo , Ocitocina/administração & dosagem , Administração Intranasal , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Injeções Intraperitoneais/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise/métodos , Ocitocina/sangue , Ocitocina/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-29075234

RESUMO

The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms a lasting connection between mates, known as a pair bond. The pair bond is primarily characterized by three distinct behaviors: partner preference, selective aggression, and biparental care of the young. The presence of these behaviors in the prairie vole and their absence in closely related non-monogamous species makes the prairie vole an important model of social relationships and facilitates the study of the neurobiological mechanisms of social affiliation and attachment. The nona-peptide arginine-vasopressin (AVP) is an important neuromodulator of social behavior and has been implicated in the regulation of the pair bond-related behaviors of the prairie vole, through activation of the AVP receptor subtype 1a (AVPR1a). Modulation of AVPR1a activity in different regions of the prairie vole brain impacts pair bond behavior, suggesting a role of AVP in neurocircuitry responsible for the regulation of social attachment. This review will discuss findings that have suggested the role of AVP in regulation of the pair bond-related behaviors of the prairie vole and the specific brain regions through which AVP acts to impact these unique behaviors.

17.
Nat Commun ; 7: 10268, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743492

RESUMO

Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.


Assuntos
Proteína Relacionada com Agouti/genética , Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotálamo/citologia , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Técnicas de Patch-Clamp , Fosfoproteínas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
18.
Psychoneuroendocrinology ; 63: 50-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26415118

RESUMO

Oxytocin (Oxt) is released in various hypothalamic and extrahypothalamic brain areas in response to anxiogenic stimuli to regulate aspects of emotionality and stress coping. We examined the anxiolytic action of Oxt in the hypothalamic paraventricular nucleus (PVN) while appraising if Oxt recruits GABA neurons to inhibit the behavioral, hormonal, and neuronal response to stress in female prairie voles (Microtus ochrogaster). Voles received an injection of Oxt in the PVN either before or after an elevated platform stress to determine a time-course for the effects of Oxt on the hormonal stress response. Subsequently, we evaluated if ante-stress injections of Oxt affected anxiety-like behaviors as well as neuronal activity in the PVN, using real-time in-vivo retrodialysis and immunohistochemistry with c-Fos expression as a biomarker of neural activity. In addition, we exposed voles to Oxt and a GABAA receptor antagonist, concurrently, to evaluate the impact of pharmacological blockade of GABAA receptors on the anxiolytic effects of Oxt. Elevated platform stress amplified anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity-catalyzing corticotrophin-releasing hormone (CRH) neuronal activity and augmenting corticosterone release in circulation. Ante-stress Oxt injections in the PVN blocked these stress effects while promoting PVN GABA activity and release. Post-stress Oxt treatments were ineffective. The anxiolytic effects of Oxt were hindered by concurrent pharmacological blockade of GABAA receptors. Together, our data demonstrate ante-stress treatments of Oxt in the PVN inhibit stress activation of the HPA axis through recruitment of GABAergic neurons, providing insights to the local circuitry and potential therapeutically-relevant mechanisms.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Ocitócicos/farmacologia , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de GABA-A/metabolismo , Animais , Arvicolinae , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Imuno-Histoquímica , Microdiálise , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
PLoS Comput Biol ; 11(12): e1004605, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26683221

RESUMO

Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.


Assuntos
Dinossauros/fisiologia , Voo Animal/fisiologia , Membro Anterior/fisiologia , Modelos Biológicos , Natação/fisiologia , Asas de Animais/fisiologia , Animais , Simulação por Computador , Membro Posterior/fisiologia , Reologia/métodos
20.
Biol Psychiatry ; 76(4): 281-8, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24183103

RESUMO

BACKGROUND: While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. METHODS: Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). RESULTS: We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. CONCLUSIONS: Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders.


Assuntos
Ocitocina/metabolismo , Ligação do Par , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/fisiopatologia , Arvicolinae , Corticosterona/sangue , Feminino , Atividade Motora/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Distribuição Aleatória , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Restrição Física , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...