Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 128: 12-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27193738

RESUMO

Xyloglucan is the most abundant hemicellulose in the primary cell wall of dicotyledonous plants. In Arabidopsis, three xyloglucan xylosyltransferases, XXT1, XXT2, and XXT5, participate in xylosylation of the xyloglucan backbone. Despite the importance of these enzymes, there is a lack of information on their structure and the critical residues required for substrate binding and transferase activity. In this study, the roles of different domains of XX2 in protein expression and catalytic activity were investigated by constructing a series of N- and C-terminal truncations. XXT2 with an N-terminal truncation of 31 amino acids after the predicted transmembrane domain showed the highest protein expression, but truncations of more than 31 residues decreased protein expression and catalytic activity. XXT2 constructs with C-terminal truncations showed increased protein expression but decreased activity, particularly for truncations of 44 or more amino acids. Site-directed mutagenesis was also used to investigate six positively charged residues near the C-terminus and found that four of the mutants showed decreased enzymatic activity. We conclude that the N- and C-termini of XXT2 have important roles in protein folding and enzymatic activity: the stem region (particularly the N-terminus of the catalytic domain) is critical for protein folding and the C-terminus is essential for enzymatic activity but not for protein folding.


Assuntos
Glucanos/química , Pentosiltransferases/química , Xilanos/química , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutagênese Sítio-Dirigida , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Caules de Planta/metabolismo
2.
Glycobiology ; 26(9): 961-972, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27146522

RESUMO

In dicotyledonous plants, xyloglucan (XyG) is the most abundant hemicellulose of the primary cell wall. The enzymes involved in XyG biosynthesis have been identified through reverse-genetics and activity was characterized by heterologous expression. Currently, there is no information on the atomic structures or amino acids involved in activity or substrate binding of any of the Golgi-localized XyG biosynthetic enzymes. A homology model of the xyloglucan xylosyltransferase 2 (XXT2) catalytic domain was built on the basis of the crystal structure of A64Rp. Molecular dynamics simulations revealed that the homology model retains the glycosyltransferase (GT)-A fold of the template structure used to build the homology model indicating that XXT2 likely has a GT-A fold. According to the XXT2 homology model, six amino acids (Phe204, Lys207, Asp228, Ser229, Asp230, His378) were selected and their contribution in catalytic activity was investigated. Site-directed mutagenesis studies show that Asp228, Asp230 and His378 are critical for XXT2 activity and are predicted to be involved in coordination of manganese ion. Lys207 was also found to be critical for protein activity and the homology model indicates a critical role in substrate binding. Additionally, Phe204 mutants have less of an impact on XXT2 activity with the largest effect when replaced with a polar residue. This is the first study that investigates the amino acids involved in substrate binding of the XyG-synthesizing xylosyltransferases and contributes to the understanding of the mechanisms of polysaccharide-synthesizing GTs and XyG biosynthesis.


Assuntos
Aminoácidos/química , Parede Celular/química , Pentosiltransferases/química , Conformação Proteica , Sequência de Aminoácidos/genética , Aminoácidos/genética , Arabidopsis/química , Arabidopsis/genética , Sítios de Ligação , Domínio Catalítico , Parede Celular/enzimologia , Glucanos/biossíntese , Glucanos/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pentosiltransferases/genética , Ligação Proteica , Homologia Estrutural de Proteína , Especificidade por Substrato , Xilanos/biossíntese , Xilanos/química
3.
Plant Physiol ; 171(3): 1893-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208276

RESUMO

Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a ß-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Pentosiltransferases/metabolismo , Motivos de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Mutagênese , Oligossacarídeos/metabolismo , Pentosiltransferases/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uridina Difosfato Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...