Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 68(4): 2628-2632, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33142031

RESUMO

Many infectious pathogens can be transmitted by highly mobile species, like bats that can act as reservoir hosts for viruses such as henipaviruses, lyssaviruses and coronaviruses. In this study, we investigated the seroepidemiology of protein antigens to Severe acute respiratory syndrome virus (SARS-CoV-1) and Middle eastern respiratory syndrome virus (MERS-CoV) in Grey-headed flying foxes (Pteropus poliocephalus) in Adelaide, Australia sampled between September 2015 and February 2018. A total of 301 serum samples were collected and evaluated using a multiplex Luminex binding assay, and median fluorescence intensity thresholds were determined using finite-mixture modelling. We found evidence of antibodies reactive to SARS-CoV-1 or a related antigen with 42.5% (CI: 34.3%-51.2%) seroprevalence but insufficient evidence of reactivity to MERS-CoV antigen. This study provides evidence that the Grey-headed flying foxes sampled in Adelaide have been exposed to a SARS-like coronavirus.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Lyssavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Estudos Soroepidemiológicos
2.
PLoS One ; 15(5): e0232339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374743

RESUMO

Habitat-mediated global change is driving shifts in species' distributions which can alter the spatial risks associated with emerging zoonotic pathogens. Many emerging infectious pathogens are transmitted by highly mobile species, including bats, which can act as spill-over hosts for pathogenic viruses. Over three years, we investigated the seroepidemiology of paramyxoviruses and Australian bat lyssavirus in a range-expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus), in a new camp in Adelaide, South Australia. Over six, biannual, sampling sessions, we quantified median florescent intensity (MFI) antibody levels for four viruses for a total of 297 individual bats using a multiplex Luminex binding assay. Where appropriate, florescence thresholds were determined using finite mixture modelling to classify bats' serological status. Overall, apparent seroprevalence of antibodies directed at Hendra, Cedar and Tioman virus antigens was 43.2%, 26.6% and 95.7%, respectively. We used hurdle models to explore correlates of seropositivity and antibody levels when seropositive. Increased body condition was significantly associated with Hendra seropositivity (Odds ratio = 3.67; p = 0.002) and Hendra virus levels were significantly higher in pregnant females (p = 0.002). While most bats were seropositive for Tioman virus, antibody levels for this virus were significantly higher in adults (p < 0.001). Unexpectedly, all sera were negative for Australian bat lyssavirus. Temporal variation in antibody levels suggests that antibodies to Hendra virus and Tioman virus may wax and wane on a seasonal basis. These findings suggest a common exposure to Hendra virus and other paramyxoviruses in this flying fox camp in South Australia.


Assuntos
Quirópteros/virologia , Vírus Hendra/isolamento & purificação , Lyssavirus/isolamento & purificação , Animais , Quirópteros/sangue , Quirópteros/imunologia , Quirópteros/fisiologia , Feminino , Vírus Hendra/imunologia , Lyssavirus/imunologia , Masculino , Reprodução , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...