Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(2): e20311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866429

RESUMO

Maize (Zea mays L.) is a crop of major economic and food security importance globally. The fall armyworm (FAW), Spodoptera frugiperda, can devastate entire maize crops, especially in countries or markets that do not allow the use of transgenic crops. Host-plant insect resistance is an economical and environmentally benign way to control FAW, and this study sought to identify maize lines, genes, and pathways that contribute to resistance to FAW. Of the 289 maize lines phenotyped for FAW damage in artificially infested, replicated field trials over 3 years, 31 were identified with good levels of resistance that could donate FAW resistance into elite but susceptible hybrid parents. The 289 lines were genotyped by sequencing to provide single nucleotide polymorphism (SNP) markers for a genome-wide association study (GWAS), followed by a metabolic pathway analysis using the Pathway Association Study Tool (PAST). GWAS identified 15 SNPs linked to 7 genes, and PAST identified multiple pathways, associated with FAW damage. Top pathways, and thus useful resistance mechanisms for further study, include hormone signaling pathways and the biosynthesis of carotenoids (particularly zeaxanthin), chlorophyll compounds, cuticular wax, known antibiosis agents, and 1,4-dihydroxy-2-naphthoate. Targeted metabolite analysis confirmed that maize genotypes with lower levels of FAW damage tend to have higher levels of chlorophyll a than genotypes with high FAW damage, which tend to have lower levels of pheophytin, lutein, chlorophyll b and ß-carotene. The list of resistant genotypes, and the results from the genetic, pathway, and metabolic study, can all contribute to efficient creation of FAW resistant cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Animais , Zea mays/genética , Spodoptera/genética , Clorofila A , Larva
2.
Plant Genome ; 11(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505629

RESUMO

Maize ( L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [ (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide association analysis was performed, followed by pathway analysis using a gene-set enrichment-based approach. The gene-set enrichment exposed the cumulative effects of genes in pathways to identify those that contributed the most to resistance. Single nucleotide polymorphism-trait associations were linked to genes including transcription factors, protein kinases, hormone-responsive proteins, hydrolases, pectinases, xylogluconases, and the flavonol synthase gene (in the maysin biosynthesis pathway). The most significantly associated metabolic pathways identified included those that modified cell wall components, especially homogalacturonan, wax esters, and fatty acids; those involved in antibiosis, especially 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), flavonoids, and phenolics; and those involved in plant growth, including N uptake and energy production. The pathways identified in this study, and especially the cell wall-associated pathways, identified here for the first time, provide clues to resistance mechanisms that could guide the identification of new resistant ideotypes and candidate genes for creation of resistant maize germplasm via selection of natural variants or gene editing.


Assuntos
Redes e Vias Metabólicas/genética , Mariposas , Zea mays/genética , Zea mays/metabolismo , Agricultura/estatística & dados numéricos , Animais , Benzoxazinas/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Texas
3.
Toxins (Basel) ; 10(2)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385107

RESUMO

Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to resistance, if any, is unknown. This study presents a consolidated list of candidate genes identified in past studies or in-house studies, with descriptive data including genetic location, gene annotation, known protein identifiers, and associated pathway information, if known. A candidate gene pipeline to test the phenotypic effect of any maize DNA sequence on aflatoxin accumulation resistance was used in this study to determine any measurable effect on polymorphisms within or linked to the candidate gene sequences, and the results are published here.


Assuntos
Aflatoxinas , Aspergillus flavus , Resistência à Doença/genética , Genes de Plantas , Zea mays/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Zea mays/microbiologia
4.
PLoS One ; 10(6): e0126185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090679

RESUMO

Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Quitinases/genética , Interações Hospedeiro-Patógeno/genética , Zea mays/genética , Zea mays/metabolismo , Quitinases/metabolismo , Mapeamento Cromossômico , Biologia Computacional , Bases de Dados Genéticas , Genes de Plantas , Variação Genética , Fenótipo , Filogenia , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...