Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959455

RESUMO

The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against ß-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.

2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543092

RESUMO

A series of 5-benzylamine-substituted pyrimido[4,5-c]quinoline derivatives of the CSNK2A chemical probe SGC-CK2-2 were synthesized with the goal of improving kinase inhibitor cellular potency and antiviral phenotypic activity while maintaining aqueous solubility. Among the range of analogs, those bearing electron-withdrawing (4c and 4g) or donating (4f) substituents on the benzyl ring as well as introduction of non-aromatic groups such as the cyclohexylmethyl (4t) were shown to maintain CSNK2A activity. The CSNK2A activity was also retained with N-methylation of SGC-CK2-2, but α-methyl substitution of the benzyl substituent led to a 10-fold reduction in potency. CSNK2A inhibition potency was restored with indene-based compound 4af, with activity residing in the S-enantiomer (4ag). Analogs with the highest CSNK2A potency showed good activity for inhibition of Mouse Hepatitis Virus (MHV) replication. Conformational analysis indicated that analogs with the best CSNK2A inhibition (4t, 4ac, and 4af) exhibited smaller differences between their ground state conformation and their predicted binding pose. Analogs with reduced activity (4ad, 4ae, and 4ai) required more substantial conformational changes from their ground state within the CSNK2A protein pocket.

3.
Bioorg Med Chem Lett ; 99: 129617, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199328

RESUMO

We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.


Assuntos
Benzoatos , Pirazinas , Relação Estrutura-Atividade , Pirazinas/farmacologia , Antivirais/farmacologia
4.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106118

RESUMO

We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.

5.
ACS Omega ; 8(42): 39546-39561, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901516

RESUMO

3-Cyano-7-cyclopropylamino-pyrazolo[1,5-a]pyrimidines, including the chemical probe SGC-CK2-1, are potent and selective inhibitors of CSNK2A in cells but have limited utility in animal models due to their poor pharmacokinetic properties. While developing analogues with reduced intrinsic clearance and the potential for sustained exposure in mice, we discovered that phase II conjugation by GST enzymes was a major metabolic transformation in hepatocytes. A protocol for codosing with ethacrynic acid, a covalent reversible GST inhibitor, was developed to improve the exposure of analogue 2h in mice. A double codosing protocol, using a combination of ethacrynic acid and irreversible P450 inhibitor 1-aminobenzotriazole, increased the blood level of 2h by 40-fold at a 5 h time point.

6.
J Med Chem ; 66(21): 14724-14734, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37871287

RESUMO

Tuberculosis (TB) control is complicated by the emergence of drug resistance. Promising strategies to prevent drug resistance are the targeting of nonreplicating, drug-tolerant bacterial populations and targeting of the host, but inhibitors and targets for either are still rare. In a cell-based screen of ATP-competitive inhibitors, we identified compounds with in vitro activity against replicating Mycobacterium tuberculosis (Mtb), and an anilinoquinazoline (AQA) that also had potent activity against nonreplicating and persistent Mtb. AQA was originally developed to inhibit human transforming growth factor receptor 1 (TGFBR1), a host kinase that is predicted to have host-adverse effects during Mtb infection. The structure-activity relationship of this dually active compound identified the pyridyl-6-methyl group as being required for potent Mtb inhibition but a liability for P450 metabolism. Pyrrolopyrimidine (43) emerged as the optimal compound that balanced micromolar inhibition of nonreplicating Mtb and TGFBR1 while also demonstrating improved metabolic stability and pharmacokinetic profiles.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Receptor do Fator de Crescimento Transformador beta Tipo I , Tuberculose/tratamento farmacológico
7.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490324

RESUMO

Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3ß, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3ß activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3ß activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3ß. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.


Assuntos
Hipocampo , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Hipocampo/metabolismo , Quinases Ciclina-Dependentes
8.
bioRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292607

RESUMO

3-cyano-7-cyclopropylamino-pyrazolo[1,5-a]pyrimidines, including the chemical probe SGC-CK2-1, are potent and selective inhibitors of CSNK2A in cells but have limited utility in animal models due to their poor pharmacokinetic properties. While developing analogs with reduced intrinsic clearance and the potential for sustained exposure in mice, we discovered that Phase II conjugation by GST enzymes was a major metabolic transformation in hepatocytes. A protocol for co-dosing with ethacrynic acid, a covalent reversible GST inhibitor, was developed to improve the exposure of analog 2h in mice. A double co-dosing protocol, using a combination of ethacrynic acid and irreversible P450 inhibitor 1-aminobenzotriazole increased the blood level of 2h by 40-fold at a 5 h time point.

9.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37162893

RESUMO

Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3b, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3b activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3b activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3b. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.

10.
ACS Med Chem Lett ; 14(4): 432-441, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077385

RESUMO

Naphthyridine-based inhibitors were synthesized to yield a potent and cell-active inhibitor of casein kinase 2 (CK2). Compound 2 selectively inhibits CK2α and CK2α' when profiled broadly, thereby making it an exquisitely selective chemical probe for CK2. A negative control that is structurally related but lacks a key hinge-binding nitrogen (7) was designed on the basis of structural studies. Compound 7 does not bind CK2α or CK2α' in cells and demonstrates excellent kinome-wide selectivity. Differential anticancer activity was observed when compound 2 was profiled alongside a structurally distinct CK2 chemical probe: SGC-CK2-1. This naphthyridine-based chemical probe (2) represents one of the best available small molecule tools with which to interrogate biology mediated by CK2.

11.
ACS Chem Neurosci ; 14(9): 1672-1685, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084253

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.


Assuntos
Quinase 3 da Glicogênio Sintase , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Neurônios , Quinases Ciclina-Dependentes , Proteínas Serina-Treonina Quinases
12.
Sci Rep ; 13(1): 6118, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059819

RESUMO

Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
13.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049713

RESUMO

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases , Proliferação de Células , Mitose , Inibidores de Proteínas Quinases/farmacologia
14.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36865333

RESUMO

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential anti target of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1 we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In cell target engagement for PLK1 was in good agreement with the reported cellular potency for inhibition of cell proliferation. Probe 11 enabled investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib by NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.

15.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798313

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.

16.
J Med Chem ; 65(19): 12860-12882, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111834

RESUMO

From a designed library of indolyl pyrimidinamines, we identified a highly potent and cell-active chemical probe (17) that inhibits phosphatidylinositol-3-phosphate 5-kinase (PIKfyve). Comprehensive evaluation of inhibitor selectivity confirmed that this PIKfyve probe demonstrates excellent kinome-wide selectivity. A structurally related indolyl pyrimidinamine (30) was characterized as a negative control that lacks PIKfyve inhibitory activity and exhibits exquisite selectivity when profiled broadly. Chemical probe 17 disrupts multiple phases of the lifecycle of ß-coronaviruses: viral replication and viral entry. The diverse antiviral roles of PIKfyve have not been previously probed comprehensively in a single study or using the same compound set. Our scaffold is a distinct chemotype that lacks the canonical morpholine hinge-binder of classical lipid kinase inhibitors and has a non-overlapping kinase off-target profile with known PIKfyve inhibitors. Our chemical probe set can be used by the community to further characterize the role of PIKfyve in virology.


Assuntos
Coronavirus , Fosfatidilinositol 3-Quinases , Antivirais/farmacologia , Morfolinas , Fosfatos , Fosfatidilinositóis , Inibidores de Fosfoinositídeo-3 Quinase
17.
ACS Chem Biol ; 17(7): 1937-1950, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35723434

RESUMO

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for the development of anti-SARS-like ß-coronavirus drugs.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Antivirais/farmacologia , Coronavirus/genética , Humanos , Camundongos , Internalização do Vírus
18.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
bioRxiv ; 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35018375

RESUMO

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-ß-coronavirus drugs.

20.
Bioorg Med Chem Lett ; 28(10): 1958-1963, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653895

RESUMO

Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectivity, solubility, and pharmacokinetic properties were undertaken on all three series, as SAR was often transferrable. Ultimately, a 2,4-diaryl 7-azaindole was optimized to afford a tool molecule that potently inhibits AMPK phosphorylation in a hypothalamus-derived cell line, is orally bioavailable, and crosses the blood-brain barrier. When dosed orally in rodents, compound 4 t limited ghrelin-induced food intake.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Administração Oral , Animais , Encéfalo/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Ligação de Hidrogênio , Indóis/química , Indóis/metabolismo , Concentração Inibidora 50 , Camundongos , Mutagênese , Inibidores de Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...