Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36526366

RESUMO

Retinal ganglion cell (RGC) axons comprise the optic nerve and carry information to the dorsolateral geniculate nucleus (dLGN), which is then relayed to the cortex for conscious vision. Glaucoma is a blinding neurodegenerative disease that commonly results from intraocular pressure (IOP)-associated injury leading to RGC axonal pathology, disruption of RGC outputs to the brain, and eventual apoptotic loss of RGC somata. The consequences of elevated IOP and glaucomatous pathology on RGC signaling to the dLGN are largely unknown yet are likely to contribute to vision loss. Here, we used anatomic and physiological approaches to study the structure and function of retinogeniculate (RG) synapses in male and female DBA/2J (D2) mice with inherited glaucoma before and after IOP elevation. D2 mice showed progressive loss of anterograde optic tract transport to the dLGN and vGlut2 labeling of RGC axon terminals while patch-clamp measurements of RG synaptic function showed that synaptic transmission was reduced in 9-month and 12-month D2 mice because of the loss of individual RGC axon inputs. TC neuron dendrites had reduced Sholl complexity at 12 months, suggestive of delayed reorganization following reduced synaptic input. There was no detectable change in RGC density in 11- to 12-month D2 retinas, quantified as the number of ganglion cell layer-residing somata immuno-positive for NeuN and immuno-negative for the amacrine marker choline acetyltransferase (ChAT). Thus, observed synaptic defects appear to precede RGC somatic loss. These findings identify glaucoma-associated and IOP-associated deficits in an important subcortical RGC projection target, shedding light on processes linking IOP to vision loss.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Camundongos , Animais , Masculino , Feminino , Camundongos Endogâmicos DBA , Doenças Neurodegenerativas/patologia , Glaucoma/patologia , Retina/patologia , Células Ganglionares da Retina/fisiologia , Modelos Animais de Doenças
2.
Neuroscience ; 488: 44-59, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131394

RESUMO

Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.


Assuntos
Corpos Geniculados , Sinapses , Potenciais de Ação/fisiologia , Animais , Corpos Geniculados/fisiologia , Camundongos , Neurônios , Técnicas de Patch-Clamp , Sinapses/fisiologia
3.
Curr Eye Res ; 47(6): 897-907, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35179406

RESUMO

PURPOSE: The DBA/2J (D2) mouse is an established model of pigmentary glaucoma, a type of primary open angle glaucoma. Prior studies have documented defects in flash electroretinogram (ERG) responses in D2 mice, but the origin of those defects is not clear. The purpose of this study was to understand the origin of these A-wave and B-wave changes in D2 ERGs. MATERIALS AND METHODS: To accomplish this, we analyzed the differences between 9-month-old DBA/2J-Gpnmb+ (D2-control) and D2 mouse eyes in relation to ERG responses, intraocular pressure (IOP), outer nuclear layer thickness, and pupil area. RESULTS: D2 scotopic ERGs showed lower A-wave amplitude and longer implicit time as well as a significant rightward shift in the intensity-response curve. D2 IOP increased at approximately seven months of age and had a weak correlation with the ERG A-wave sensitivity. Outer nuclear layer thickness was not significantly different in D2s compared to D2-control retinas. D2 mouse pupils also showed abnormal pupillary shape and no dilation following treatment with tropicamide eye drops. The pupil size moderately correlated with the A-wave sensitivity and this was pharmacologically replicated in C57Bl/6J mice following administration of pilocarpine to constrict the pupils. However, pilocarpine treatment did not affect ERG amplitudes. CONCLUSIONS: These data suggest that the smaller pupil sizes prevented light from reaching the photoreceptors and thus contributed to reduced ERG sensitivity in D2 mice. The reduced ERG A-wave amplitude in D2 mice likely results from dysfunctional photoreceptor responses.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glaucoma de Ângulo Aberto/diagnóstico , Pressão Intraocular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pilocarpina , Pupila , Retina
4.
Front Cell Neurosci ; 14: 626056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584206

RESUMO

Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma-the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.

5.
Front Cell Neurosci ; 13: 426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607867

RESUMO

Axonopathy is a hallmark of many neurodegenerative diseases including glaucoma, where elevated intraocular pressure (ocular hypertension, OHT) stresses retinal ganglion cell (RGC) axons as they exit the eye and form the optic nerve. OHT causes early changes in the optic nerve such as axon atrophy, transport inhibition, and gliosis. Importantly, many of these changes appear to occur prior to irreversible neuronal loss, making them promising points for early diagnosis of glaucoma. It is unknown whether OHT has similarly early effects on the function of RGC output to the brain. To test this possibility, we elevated eye pressure in mice by anterior chamber injection of polystyrene microbeads. Five weeks post-injection, bead-injected eyes showed a modest RGC loss in the peripheral retina, as evidenced by RBPMS antibody staining. Additionally, we observed reduced dendritic complexity and lower spontaneous spike rate of On-αRGCs, targeted for patch clamp recording and dye filling using a Opn4-Cre reporter mouse line. To determine the influence of OHT on retinal projections to the brain, we expressed Channelrhodopsin-2 (ChR2) in melanopsin-expressing RGCs by crossing the Opn4-Cre mouse line with a ChR2-reporter mouse line and recorded post-synaptic responses in thalamocortical relay neurons in the dorsal lateral geniculate nucleus (dLGN) of the thalamus evoked by stimulation with 460 nm light. The use of a Opn4-Cre reporter system allowed for expression of ChR2 in a narrow subset of RGCs responsible for image-forming vision in mice. Five weeks following OHT induction, paired pulse and high-frequency stimulus train experiments revealed that presynaptic vesicle release probability at retinogeniculate synapses was elevated. Additionally, miniature synaptic current frequency was slightly reduced in brain slices from OHT mice and proximal dendrites of post-synaptic dLGN relay neurons, assessed using a Sholl analysis, showed a reduced complexity. Strikingly, these changes occurred prior to major loss of RGCs labeled with the Opn4-Cre mouse, as indicated by immunofluorescence staining of ChR2-expressing retinal neurons. Thus, OHT leads to pre- and post-synaptic functional and structural changes at retinogeniculate synapses. Along with RGC dendritic remodeling and optic nerve transport changes, these retinogeniculate synaptic changes are among the earliest signs of glaucoma.

6.
Ann Clin Transl Neurol ; 2(5): 559-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26000327

RESUMO

OBJECTIVE: Systematic investigation of individuals with intellectual disability after genetic diagnosis can illuminate specific phenotypes and mechanisms relevant to common neurodevelopmental disorders. We report the neurological, cognitive and neuroanatomical characteristics of nine males from three families with loss-of-function mutations in ZDHHC9 (OMIM #300799). METHODS: All known cases of X-linked intellectual disability (XLID) due to ZDHHC9 mutation in the United Kingdom were invited to participate in a study of neurocognitive and neuroimaging phenotypes. RESULTS: Seven out of nine males with ZDHHC9 mutations had been diagnosed with epilepsy, exceeding epilepsy risk in XLID comparison subjects (P = 0.01). Seizure histories and EEG features amongst ZDHHC9 mutation cases shared characteristics with rolandic epilepsy (RE). Specific cognitive deficits differentiated males with ZDHHC9 mutations from XLID comparison subjects and converged with reported linguistic and nonlinguistic deficits in idiopathic RE: impaired oromotor control, reduced verbal fluency, and impaired inhibitory control on visual attention tasks. Consistent neuroanatomical abnormalities included thalamic and striatal volume reductions and hypoplasia of the corpus callosum. INTERPRETATION: Mutations in ZDHHC9 are associated with susceptibility to focal seizures and specific cognitive impairments intersecting with the RE spectrum. Neurocognitive deficits are accompanied by consistent abnormalities of subcortical structures and inter-hemispheric connectivity. The biochemical, cellular and network-level mechanisms responsible for the ZDHHC9-associated neurocognitive phenotype may be relevant to cognitive outcomes in RE.

7.
Yeast ; 22(7): 537-51, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15942929

RESUMO

We show that overexpression of Sub2p, a multifunctional Saccharomyces cerevisiae helicase family member that is involved in mRNA elongation and transport, also suppresses heterochromatic silencing at telomeres. Genetic assays show cells that overexpress SUB2 from a high copy plasmid exhibit increased survival rates when selecting for a telomere-silenced URA3 reporter. Two temperature-sensitive sub2 mutations that affect different helicase domains were also examined at the permissive temperature; these mutants also overcome silencing of the URA3 reporter. The degree to which silencing is suppressed correlates with SUB2 RNA and protein levels. Additionally, we find that Sub2p localizes to the telomeres, as determined by chromatin immunoprecipitation assays, suggesting that Sub2p has a direct effect at telomeres. Genome-wide analysis of transcripts was used to assess whether Sub2p overproduction affects only the silenced URA3 reporter gene, or whether other subtelomeric genes are also affected. Of the 70 RNA transcripts elevated in the Sub2p overexpressing cells, 28% are encoded by subtelomeric genes that are located within 5 Kbp of a core X or Y' repeat. The remainder of the transcripts clustered into several functional groups, including the iron homeostasis pathway, purine nucleotide metabolism, and miscellaneous transport genes, among others. These results suggest a targeted effect of Sub2p on transcription. Our results also confirm that Sub2p affects heterochromatic gene expression, similar to that observed with the Drosophila Hel25E homologue. The above observations imply that Sub2p affects chromatin structure in addition to, or in parallel with, its functions in transcription elongation, splicing and mRNA transport.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Imunoprecipitação da Cromatina , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...