Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Child Obes ; 17(5): 357-364, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844928

RESUMO

Background: Omega-3 fatty acid supplementation has been investigated in treating elevated triglycerides (TGs), nonalcoholic fatty liver disease (NAFLD), and low high-density lipoprotein cholesterol (HDL) in adults, but has not been well studied in youth with obesity. This retrospective study examined the effectiveness of omega-3 as an adjunct therapy for these conditions in patients participating in a pediatric weight management program (PWMP). Methods: Patients with a BMI ≥85th percentile and abnormal alanine transaminase (ALT), TGs, or HDL, participating in our PWMP, were identified (n = 617). Patients prescribed an omega-3 were classified as treated (n = 68). Treated patients were matched (1:1) to untreated patients on the propensity for treatment. Generalized least squares regression was used to model the change in TGs, HDL, and ALT adjusted for baseline characteristics. Results: The treated (mean age 12.7 years, 60.3% male, TGs 218.7 mg/dL, ALT 49.6 U/L, HDL 34.9 mg/dL; 42.6% Hispanic, 72% severe obesity) and matched control patients showed improvement in point estimates in TGs (p = 0.62), HDL (p = 0.18), and ALT (p = 0.43) over follow-up, but the differences in change were not statistically significant. Greater improvement was observed for treated subjects over time in TGs (difference of 5% at 6.1-12 months; 10% at 12.1-18 months: 16% at 18.1-24 months) but was not statistically significant (p > 0.2). Conclusions: This study did not demonstrate that omega-3 therapy is of definitive benefit as an adjunct to lifestyle modification alone in children with obesity for hypertriglyceridemia, low HDL levels, or NAFLD. A randomized-controlled trial is required to determine the impact of omega-3 supplementation in treating these conditions in this population.


Assuntos
Ácidos Graxos Ômega-3 , Hipertrigliceridemia , Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Adolescente , Adulto , Criança , Colesterol , HDL-Colesterol , Feminino , Humanos , Lipoproteínas HDL , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade Infantil/complicações , Obesidade Infantil/terapia , Estudos Retrospectivos , Triglicerídeos
2.
Hum Mol Genet ; 29(15): 2508-2522, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32620959

RESUMO

Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2-/- cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2-/- mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2-/- mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2-/- mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.


Assuntos
Síndrome de Bardet-Biedl/genética , Cílios/genética , Ciliopatias/genética , Proteínas/genética , Animais , Síndrome de Bardet-Biedl/tratamento farmacológico , Síndrome de Bardet-Biedl/patologia , Diferenciação Celular/efeitos dos fármacos , Cílios/patologia , Ciliopatias/tratamento farmacológico , Ciliopatias/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Gangliosídeos/biossíntese , Gangliosídeos/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Camundongos Knockout
3.
Physiol Rep ; 4(12)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27356569

RESUMO

Development of a disease-modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well-characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3-8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose-dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek-Erk, Akt-mTOR, and Wnt-ß-catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.


Assuntos
Deleção de Genes , Doenças Renais Policísticas/genética , Canais de Cátion TRPP/metabolismo , Animais , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Rim/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Canais de Cátion TRPP/genética , Via de Sinalização Wnt
4.
Hum Mol Genet ; 25(11): 2245-2255, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053712

RESUMO

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We show that long-lasting attenuation of PKD in the juvenile cystic kidneys (jck) mouse model of nephronophthisis by pharmacological inhibition of CDK5 using either R-roscovitine or S-CR8 is accompanied by sustained shortening of cilia and a more normal epithelial phenotype, suggesting this treatment results in a reprogramming of cellular differentiation. Also, a knock down of Cdk5 in jck cells using small interfering RNA results in significant shortening of ciliary length, similar to what we observed with R-roscovitine. Finally, conditional inactivation of Cdk5 in the jck mice significantly attenuates cystic disease progression and is associated with shortening of ciliary length as well as restoration of cellular differentiation. Our results suggest that CDK5 may regulate ciliary length by affecting tubulin dynamics via its substrate collapsin response mediator protein 2. Taken together, our data support therapeutic approaches aimed at restoration of ciliogenesis and cellular differentiation as a promising strategy for the treatment of renal cystic diseases.


Assuntos
Cílios/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/genética , Falência Renal Crônica/tratamento farmacológico , Doenças Renais Policísticas/tratamento farmacológico , Animais , Diferenciação Celular/efeitos dos fármacos , Cílios/patologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Purinas/administração & dosagem , Roscovitina , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Cell Cycle ; 11(21): 4040-6, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23032260

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.


Assuntos
Adenina/análogos & derivados , Quinases Ciclina-Dependentes/antagonistas & inibidores , Doenças Renais Císticas/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Adenina/química , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Renais Císticas/enzimologia , Doenças Renais Císticas/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/enzimologia , Rim Policístico Autossômico Dominante/patologia , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/química , Purinas/farmacologia , Roscovitina
6.
Hum Mol Genet ; 21(15): 3397-407, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22563011

RESUMO

Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças Renais Policísticas/genética , Sialiltransferases/genética , Animais , Modelos Animais de Doenças , Glucosilceramidas/metabolismo , Glicoesfingolipídeos/metabolismo , Camundongos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças Renais Policísticas/enzimologia , Sialiltransferases/metabolismo , Esfingosina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
J Gerontol Soc Work ; 53(5): 387-401, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20603750

RESUMO

A county agency and a social work research class partnered to conduct a state-mandated needs assessment of older gay, lesbian, bisexual, and transgendered people (GLBT). A survey design with purposive sampling of GLBT people over 60 yielded 38 participants. Findings included that the Internet was a viable means to reach this population and student awareness increased. Areas of greatest unmet need were GLBT-oriented/friendly legal advice, social events, grief and loss counseling, social workers, and assisted living. Some participants perceived existing senior services as unfriendly or hostile to GLBT persons. Recommendations include continued use of service-learning research and expanded needs assessment efforts.


Assuntos
Bissexualidade , Homossexualidade Feminina , Homossexualidade Masculina , Avaliação das Necessidades , Serviço Social , Transexualidade , Idoso , Idoso de 80 Anos ou mais , Redes Comunitárias , Coleta de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Nat Med ; 16(7): 788-92, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562878

RESUMO

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase-mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.


Assuntos
Dioxanos/farmacologia , Glucosilceramidas/biossíntese , Doenças Renais Policísticas/metabolismo , Pirrolidinas/farmacologia , Animais , Ciclo Celular , Modelos Animais de Doenças , Gangliosídeo G(M3)/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/tratamento farmacológico , Ratos
9.
Nature ; 444(7121): 949-52, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17122773

RESUMO

Polycystic kidney diseases (PKDs) are primarily characterized by the growth of fluid-filled cysts in renal tubules leading to end-stage renal disease. Mutations in the PKD1 or PKD2 genes lead to autosomal dominant PKD (ADPKD), a slowly developing adult form. Autosomal recessive polycystic kidney disease results from mutations in the PKHD1 gene, affects newborn infants and progresses very rapidly. No effective treatment is currently available for PKD. A previously unrecognized site of subcellular localization was recently discovered for all proteins known to be disrupted in PKD: primary cilia. Because ciliary functions seem to be involved in cell cycle regulation, disruption of proteins associated with cilia or centrioles may directly affect the cell cycle and proliferation, resulting in cystic disease. We therefore reasoned that the dysregulated cell cycle may be the most proximal cause of cystogenesis, and that intervention targeted at this point could provide significant therapeutic benefit for PKD. Here we show that treatment with the cyclin-dependent kinase (CDK) inhibitor (R)-roscovitine does indeed yield effective arrest of cystic disease in jck and cpk mouse models of PKD. Continuous daily administration of the drug is not required to achieve efficacy; pulse treatment provides a robust, long-lasting effect, indicating potential clinical benefits for a lifelong therapy. Molecular studies of the mechanism of action reveal effective cell-cycle arrest, transcriptional inhibition and attenuation of apoptosis. We found that roscovitine is active against cysts originating from different parts of the nephron, a desirable feature for the treatment of ADPKD, in which cysts form in multiple nephron segments. Our results indicate that inhibition of CDK is a new and effective approach to the treatment of PKD.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Modelos Animais de Doenças , Doenças Renais Policísticas/tratamento farmacológico , Purinas/farmacologia , Purinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Progressão da Doença , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Doenças Renais Policísticas/patologia , Purinas/administração & dosagem , Roscovitina , Fatores de Tempo
10.
J Am Soc Nephrol ; 17(10): 2821-31, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16928806

RESUMO

Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.


Assuntos
Cílios/metabolismo , Transtornos da Motilidade Ciliar/fisiopatologia , Doenças Renais Císticas/patologia , Rim Policístico Autossômico Dominante/etiologia , Animais , Cílios/genética , AMP Cíclico/metabolismo , Progressão da Doença , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Quinases Relacionadas a NIMA , Rim Policístico Autossômico Dominante/fisiopatologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Caracteres Sexuais , Transdução de Sinais , Taxa de Sobrevida , Canais de Cátion TRPP/metabolismo
11.
Soc Work Health Care ; 41(2): 71-83, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16048863

RESUMO

In a sample of 117 HIV positive men and women, 34 (29%) were identified as engaging in risky sexual behavior in the past six months and were asked for reasons they did so. Analysis using broad categories revealed that partner-related reasons and hedonistic reasons were the most frequent reasons overall (71%). More male (87%) than female (60%) responses were captured by those two categories. Differences by partner status, viral load and age were not as pronounced. Specific interventions and intervention frameworks are suggested.


Assuntos
Síndrome da Imunodeficiência Adquirida , Assunção de Riscos , Sexo sem Proteção/estatística & dados numéricos , Adulto , Preservativos/estatística & dados numéricos , Etnicidade , Feminino , Humanos , Masculino , Nevada , Classe Social , Inquéritos e Questionários , Sexo sem Proteção/psicologia
12.
Naturwissenschaften ; 92(3): 121-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15688185

RESUMO

King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.


Assuntos
Elapidae/classificação , Elapidae/fisiologia , Fósseis , Comportamento Predatório , Animais , Austrália , Citocromos b/genética , DNA Mitocondrial/genética , Elapidae/genética , Geografia , Museus , NADH Desidrogenase/genética , Filogenia , RNA de Transferência/genética
13.
J Sex Res ; 40(4): 346-50, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14735408

RESUMO

This study investigates gender and ethnicity differences in the experience of not using a condom due to a partner s influence (unwanted noncondom use). Analysis of 247 anonymous questionnaires from students at urban community college campuses revealed that 46.7% had experienced unwanted noncondom use since age 16, and 37% had experienced unwanted noncondom use with their current or most recent partner. Males and females reported equal levels of unwanted noncondom use. However, African-American and Latino participants reported higher levels of unwanted noncondom use than Whites. The findings indicate that females, males, and people from ethnic groups at high risk for HIV infection need support to carry out their safer sex intentions.


Assuntos
População Negra/psicologia , Coito/psicologia , Preservativos/estatística & dados numéricos , Hispânico ou Latino/psicologia , Parceiros Sexuais/psicologia , População Branca/psicologia , Adolescente , Adulto , Atitude Frente a Saúde , População Negra/estatística & dados numéricos , California , Comportamento Contraceptivo/psicologia , Feminino , Infecções por HIV/prevenção & controle , Hispânico ou Latino/estatística & dados numéricos , Humanos , Masculino , Assunção de Riscos , Autoeficácia , Fatores Sexuais , Estudantes/psicologia , Inquéritos e Questionários , População Branca/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...