Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Glia ; 71(2): 245-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106533

RESUMO

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Assuntos
Quimiocina CX3CL1 , Microglia , Camundongos , Ratos , Humanos , Animais , Idoso , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Proteólise , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular
2.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268121

RESUMO

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

3.
SLAS Discov ; 27(8): 448-459, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210051

RESUMO

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Assuntos
Hormônio Liberador da Corticotropina , Projetos de Pesquisa , Humanos , Animais , Camundongos , Células HEK293
4.
Bioorg Med Chem Lett ; 41: 128007, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798699

RESUMO

NAD+ is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD+ have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD+ is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD+ salvage pathway. We previously showed that NAMPT activators increase NAD+ levels in vitro and in vivo. Herein we describe the optimization of our NAMPT activator prototype (SBI-0797812) leading to the identification of 1-(4-((4-chlorophenyl)sulfonyl)phenyl)-3-(oxazol-5-ylmethyl)urea (34) that showed far more potent NAMPT activation and improved oral bioavailability.


Assuntos
Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Ureia/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
5.
Sci Rep ; 10(1): 18850, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139812

RESUMO

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteína HMGA1a/antagonistas & inibidores , Proteína HMGA2/antagonistas & inibidores , Suramina/química , Adipogenia/efeitos dos fármacos , Motivos de Aminoácidos/efeitos dos fármacos , Sequência de Bases/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteína HMGA1a/química , Proteína HMGA1a/genética , Proteína HMGA2/química , Proteína HMGA2/genética , Ensaios de Triagem em Larga Escala , Humanos , Suramina/isolamento & purificação , Suramina/farmacologia
6.
Bioorg Med Chem Lett ; 30(4): 126899, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31882297

RESUMO

The chemokine system plays an important role in mediating a proinflammatory microenvironment for tumor growth in hepatocellular carcinoma (HCC). The CXCR6 receptor and its natural ligand CXCL16 are expressed at high levels in HCC cell lines and tumor tissues and receptor expression correlates with increased neutrophils in these tissues contributing to poor prognosis in patients. Availability of pharmacologcal tools targeting the CXCR6/CXCL16 axis are needed to elucidate the mechanism whereby neutrophils are affected in the tumor environment. We report the discovery of a series of small molecules with an exo-[3.3.1]azabicyclononane core. Our lead compound 81 is a potent (EC50 = 40 nM) and selective orally bioavailable small molecule antagonist of human CXCR6 receptor signaling that significantly decreases tumor growth in a 30-day mouse xenograft model of HCC.


Assuntos
Receptores CXCR6/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Animais , Compostos Azabicíclicos/química , Compostos Azabicíclicos/metabolismo , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores CXCR6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Transplante Heterólogo
7.
J Med Chem ; 62(17): 8357-8363, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31390201

RESUMO

Neurotensin receptor 1 (NTR1) is a G protein coupled receptor that is widely expressed throughout the central nervous system where it acts as a neuromodulator. Neurotensin receptors have been implicated in a wide variety of CNS disorders, but despite extensive efforts to develop small molecule ligands there are few reports of such compounds. Herein we describe the optimization of a quinazoline based lead to give 18 (SBI-553), a potent and brain penetrant NTR1 allosteric modulator.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas , Quinazolinas/farmacologia , Receptores de Neurotensina/antagonistas & inibidores , beta-Arrestinas/farmacologia , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Animais , Disponibilidade Biológica , Doenças do Sistema Nervoso Central/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Quinazolinas/administração & dosagem , Quinazolinas/química , Ratos , Receptores de Neurotensina/metabolismo , Relação Estrutura-Atividade , beta-Arrestinas/administração & dosagem , beta-Arrestinas/química
8.
PLoS One ; 13(9): e0202436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30208056

RESUMO

Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.


Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Neovascularização Retiniana/tratamento farmacológico , Aminoquinolinas/química , Aminoquinolinas/farmacocinética , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Apelina/metabolismo , Receptores de Apelina/antagonistas & inibidores , Receptores de Apelina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Assay Drug Dev Technol ; 16(7): 384-396, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30251873

RESUMO

G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Sondas Moleculares/análise , Sondas Moleculares/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Ligantes , Sondas Moleculares/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células Tumorais Cultivadas
10.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R595-R608, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949410

RESUMO

Long-acting glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists (GLP-1RA), such as exendin-4 (Ex4), promote weight loss. On the basis of a newly discovered interaction between GLP-1 and oleoylethanolamide (OEA), we tested whether OEA enhances GLP-1RA-mediated anorectic signaling and weight loss. We analyzed the effect of GLP-1+OEA and Ex4+OEA on canonical GLP-1R signaling and other proteins/pathways that contribute to the hypophagic action of GLP-1RA (AMPK, Akt, mTOR, and glycolysis). We demonstrate that OEA enhances canonical GLP-1R signaling when combined with GLP-1 but not with Ex4. GLP-1 and Ex4 promote phosphorylation of mTOR pathway components, but OEA does not enhance this effect. OEA synergistically enhanced GLP-1- and Ex4-stimulated glycolysis but did not augment the hypophagic action of GLP-1 or Ex4 in lean or diet-induced obese (DIO) mice. However, the combination of Ex4+OEA promoted greater weight loss in DIO mice than Ex4 or OEA alone during a 7-day treatment. This was due in part to transient hypophagia and increased energy expenditure, phenotypes also observed in Ex4-treated DIO mice. Thus, OEA augments specific GLP-1RA-stimulated signaling but appears to work in parallel with Ex4 to promote weight loss in DIO mice. Elucidating cooperative mechanisms underlying Ex4+OEA-mediated weight loss could, therefore, be leveraged toward more effective obesity therapies.


Assuntos
Fármacos Antiobesidade/farmacologia , Endocanabinoides/farmacologia , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Incretinas/farmacologia , Obesidade/tratamento farmacológico , Ácidos Oleicos/farmacologia , Redução de Peso/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células CHO , Cricetulus , Dieta Hiperlipídica , Modelos Animais de Doenças , Quimioterapia Combinada , Comportamento Alimentar/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glicólise/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
11.
J Pharmacol Exp Ther ; 364(1): 87-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101218

RESUMO

Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.


Assuntos
Heme Oxigenase-1/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos
12.
Cell Rep ; 21(6): 1471-1480, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117554

RESUMO

Aging drives the occurrence of numerous diseases, including cardiovascular disease (CVD). Recent studies indicate that blood from young mice reduces age-associated pathologies. However, the "anti-aging" factors in juvenile circulation remain poorly identified. Here, we characterize the role of the apelinergic axis in mammalian aging and identify apelin as an anti-aging factor. The expression of apelin (apln) and its receptor (aplnr) exhibits an age-dependent decline in multiple organs. Reduced apln signaling perturbs organismal homeostasis; mice harboring genetic deficiency of aplnr or apln exhibit enhanced cardiovascular, renal, and reproductive aging. Genetic or pharmacological abrogation of apln signaling also induces cellular senescence mediated, in part, by the activation of senescence-promoting transcription factors. Conversely, restoration of apln in 15-month-old wild-type mice reduces cardiac hypertrophy and exercise-induced hypertensive response. Additionally, apln-restored mice exhibit enhanced vigor and rejuvenated behavioral and circadian phenotypes. Hence, a declining apelinergic axis promotes aging, whereas its restoration extends the murine healthspan.


Assuntos
Envelhecimento/genética , Receptores de Apelina/genética , Apelina/genética , Regulação para Baixo , Animais , Apelina/deficiência , Apelina/metabolismo , Receptores de Apelina/deficiência , Receptores de Apelina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Vasos Coronários/citologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
13.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244987

RESUMO

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Assuntos
Inibidores de Proteassoma/farmacologia , Quinolinas/farmacologia , Transativadores/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Quinolinas/química , Relação Estrutura-Atividade , Transativadores/metabolismo
14.
SLAS Discov ; 22(7): 867-878, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28314120

RESUMO

Biased agonists are defined by their ability to selectively activate distinct signaling pathways of a receptor, and they hold enormous promise for the development of novel drugs that specifically elicit only the desired therapeutic response and avoid potential adverse effects. Unfortunately, most high-throughput screening (HTS) assays are designed to detect signaling of G protein-coupled receptors (GPCRs) downstream of either G protein or ß-arrestin-mediated signaling but not both. A comprehensive drug discovery program seeking biased agonists must employ assays that report on the activity of each compound at multiple discrete pathways, particularly for HTS campaigns. Here, we report a systematic approach to the identification of biased agonists of human apelin receptor (APJ). We synthesized 448 modified versions of apelin and screened them against a cascade of cell-based assays, including intracellular cAMP and ß-arrestin recruitment to APJ, simultaneously. The screen yielded potent and highly selective APJ agonists. Representative hits displaying preferential signaling via either G-protein or ß-arrestin were subjected to a battery of confirmation assays. These biased agonists will be useful as tools to probe the function and pharmacology of APJ and provide proof of concept of our systematic approach to the discovery of biased ligands. This approach is likely universally applicable to the search for biased agonists of GPCRs.


Assuntos
Receptores de Apelina/agonistas , Receptores de Apelina/metabolismo , Animais , Células CHO , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
15.
Toxicol Appl Pharmacol ; 305: 250-258, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27343406

RESUMO

Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicity library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Algoritmos , Células Cultivadas , Biologia Computacional , Humanos , Contração Miocárdica/efeitos dos fármacos , Risco , Software
16.
ACS Chem Biol ; 10(8): 1871-9, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25946346

RESUMO

Nematodes parasitize ∼1/3 of humans worldwide, and effective treatment via administration of anthelmintics is threatened by growing resistance to current therapies. The nematode transcription factor SKN-1 is essential for development of embryos and upregulates the expression of genes that result in modification, conjugation, and export of xenobiotics, which can promote resistance. Distinct differences in regulation and DNA binding relative to mammalian Nrf2 make SKN-1 a promising and selective target for the development of anthelmintics with a novel mode of action that targets stress resistance and drug detoxification. We report 17 (ML358), a first in class small molecule inhibitor of the SKN-1 pathway. Compound 17 resulted from a vanillamine-derived hit identified by high throughput screening that was advanced through analog synthesis and structure-activity studies. Compound 17 is a potent (IC50 = 0.24 µM, Emax = 100%) and selective inhibitor of the SKN-1 pathway and sensitizes the model nematode C. elegans to oxidants and anthelmintics. Compound 17 is inactive against Nrf2, the homologous mammalian detoxification pathway, and is not toxic to C. elegans (LC50 > 64 µM) and Fa2N-4 immortalized human hepatocytes (LC50 > 5.0 µM). In addition, 17 exhibits good solubility, permeability, and chemical and metabolic stability in human and mouse liver microsomes. Therefore, 17 is a valuable probe to study regulation and function of SKN-1 in vivo. By selective targeting of the SKN-1 pathway, 17 could potentially lead to drug candidates that may be used as adjuvants to increase the efficacy and useful life of current anthelmintics.


Assuntos
Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Helmintíase/tratamento farmacológico , Helmintíase/parasitologia , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
17.
Expert Opin Ther Targets ; 19(5): 589-603, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25785645

RESUMO

OBJECTIVE: Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. RESEARCH DESIGN AND METHODS: Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. MAIN OUTCOME MEASURES: A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. CONCLUSIONS: The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.


Assuntos
Descoberta de Drogas/métodos , Doença por Corpos de Lewy/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Doença por Corpos de Lewy/fisiopatologia , Modelos Biológicos , Terapia de Alvo Molecular , Doença de Parkinson/fisiopatologia , Projetos Piloto , Multimerização Proteica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
18.
ACS Med Chem Lett ; 5(12): 1278-1283, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25530830

RESUMO

Cellular proteins that fail to fold properly result in inactive or disfunctional proteins that can have toxic functions. The unfolded protein response (UPR) is a two-tiered cellular mechanism initiated by eukaryotic cells that have accumulated misfolded proteins within the endoplasmic reticulum (ER). An adaptive pathway facilitates the clearance of the undesired proteins; however, if overwhelmed, cells trigger apoptosis by upregulating transcription factors such as C/EBP-homologous protein (CHOP). A high throughput screen was performed directed at identifying compounds that selectively upregulate the apoptotic CHOP pathway while avoiding adaptive signaling cascades, resulting in a sulfonamidebenzamide chemotype that was optimized. These efforts produced a potent and selective CHOP inducer (AC50 = 0.8 µM; XBP1 > 80 µM), which was efficacious in both mouse embryonic fibroblast cells and a human oral squamous cell cancer cell line, and demonstrated antiproliferative effects for multiple cancer cell lines in the NCI-60 panel.

19.
Am J Transl Res ; 6(5): 471-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360213

RESUMO

Mutations in the merlin tumor suppressor gene cause Neurofibromatosis type 2 (NF2), which is a disease characterized by development of multiple benign tumors in the nervous system. The current standard of care for NF2 calls for surgical resection of the characteristic tumors, often with devastating neurological consequences. There are currently no approved non-surgical therapies for NF2. In an attempt to identify much needed targets and therapeutically active compounds for NF2 treatment, we employed a chemical biology approach using ultra-high-throughput screening. To support this goal, we created a merlin-null mouse Schwann cell (MSC) line to screen for compounds that selectively decrease their viability and proliferation. We optimized conditions for 384-well plate assays and executed a proof-of-concept screen of the Library of Pharmacologically Active Compounds. Further confirmatory and selectivity assays identified phosphatidylinositol 3-kinase (PI3K) as a potential NF2 drug target. Notably, loss of merlin function is associated with activation of the PI3K/Akt pathway in human schwannomas. We report that AS605240, a PI3K inhibitor, decreased merlin-null MSC viability in a dose-dependent manner without significantly decreasing viability of control Schwann cells. AS605240 exerted its action on merlin-null MSCs by promoting caspase-dependent apoptosis and inducing autophagy. Additional PI3K inhibitors tested also decreased viability of merlin-null MSCs in a dose-dependent manner. In summary, our chemical genomic screen and subsequent hit validation studies have identified PI3K as potential target for NF2 therapy.

20.
J Med Chem ; 57(20): 8608-21, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25244572

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an emerging pathogenic alphavirus that can cause significant disease in humans. Given the absence of therapeutic options available and the significance of VEEV as a weaponized agent, an optimization effort was initiated around a quinazolinone screening hit 1 with promising cellular antiviral activity (EC50 = 0.8 µM), limited cytotoxic liability (CC50 > 50 µM), and modest in vitro efficacy in reducing viral progeny (63-fold at 5 µM). Scaffold optimization revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains in the low nanomolar range without cytotoxicity (EC50 = 0.02-0.04 µM, CC50 > 50 µM) while limiting in vitro viral replication (EC90 = 0.17 µM). Brain exposure was observed in mice with 45. Significant protection was observed in VEEV-infected mice at 5 mg kg(-1) day(-1) and viral replication appeared to be inhibited through interference of viral nonstructural proteins.


Assuntos
Antivirais/química , Antivirais/farmacologia , Benzamidas/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Piperazinas/farmacologia , Animais , Benzamidas/química , Avaliação Pré-Clínica de Medicamentos/métodos , Encefalomielite Equina Venezuelana/tratamento farmacológico , Compostos Heterocíclicos com 2 Anéis/química , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Piperazinas/química , Quinazolinonas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...