Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; 2(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33665635

RESUMO

De novo germline variation in POLR2A was recently reported to associate with a neurodevelopmental disorder. We report twelve individuals harboring putatively pathogenic de novo or inherited variants in POLR2A, detail their phenotypes, and map all known variants to the domain structure of POLR2A and crystal structure of RNA polymerase II. Affected individuals were ascertained from a local data lake, pediatric genetics clinic, and an online community of families of affected individuals. These include six affected by de novo missense variants (including one previously reported individual), four clinical laboratory samples affected by missense variation with unknown inheritance-with yeast functional assays further supporting altered function-one affected by a de novo in-frame deletion, and one affected by a C-terminal frameshift variant inherited from a largely asymptomatic mother. Recurrently observed phenotypes include ataxia, joint hypermobility, short stature, skin abnormalities, congenital cardiac abnormalities, immune system abnormalities, hip dysplasia, and short Achilles tendons. We report a significantly higher occurrence of epilepsy (8/12, 66.7%) than previously reported (3/15, 20%) (p value = 0.014196; chi-square test) and a lower occurrence of hypotonia (8/12, 66.7%) than previously reported (14/15, 93.3%) (p value = 0.076309). POLR2A-related developmental disorders likely represent a spectrum of related, multi-systemic developmental disorders, driven by distinct mechanisms, converging at a single locus.

2.
Environ Mol Mutagen ; 57(4): 282-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27040722

RESUMO

Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.


Assuntos
Cobalto/toxicidade , Citotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Óxidos/toxicidade , Linhagem Celular , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Tamanho da Partícula , Solubilidade
3.
Toxicol Appl Pharmacol ; 278(3): 259-65, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24823294

RESUMO

Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.


Assuntos
Carcinógenos Ambientais/toxicidade , Cobalto/toxicidade , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Transporte Biológico , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/química , Carcinógenos Ambientais/metabolismo , Ciclo Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Cobalto/análise , Cobalto/química , Cobalto/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Pulmão/química , Pulmão/metabolismo , Mutagênicos/análise , Mutagênicos/química , Mutagênicos/metabolismo , Concentração Osmolar , Óxidos/análise , Óxidos/química , Óxidos/metabolismo , Óxidos/toxicidade , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...