Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 298(1): 122-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529239

RESUMO

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P(3) and M(2) . Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes.


Assuntos
Análise de Elementos Finitos , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Feminino , Masculino , Músculos da Mastigação/anatomia & histologia , Músculos da Mastigação/fisiologia , Matemática , Modelos Biológicos , Pan troglodytes/classificação , Análise de Componente Principal , Especificidade da Espécie
2.
Anat Rec (Hoboken) ; 298(1): 145-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529240

RESUMO

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.


Assuntos
Arco Dental/anatomia & histologia , Arco Dental/fisiologia , Dieta , Hominidae/anatomia & histologia , Hominidae/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Ingestão de Alimentos/fisiologia , Ecologia , Análise de Elementos Finitos , Imageamento Tridimensional , Matemática , Modelos Biológicos
3.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23794330

RESUMO

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Assuntos
Adaptação Biológica , Antropologia/métodos , Evolução Biológica , Dieta , Hominidae/anatomia & histologia , Animais , Isótopos de Carbono/análise , Esmalte Dentário/anatomia & histologia , Ingestão de Alimentos , Análise de Elementos Finitos , Hominidae/fisiologia
4.
Cell Metab ; 11(6): 503-16, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20519122

RESUMO

Long-term usage of rosiglitazone, a synthetic PPARgamma agonist, increases fracture rates among diabetic patients. PPARgamma suppresses osteoblastogenesis while activating osteoclastogenesis, suggesting that rosiglitazone decreases bone formation while sustaining or increasing bone resorption. Using mouse models with genetically altered PPARgamma, PGC1beta, or ERRalpha, here we show that PGC1beta is required for the resorption-enhancing effects of rosiglitazone. PPARgamma activation indirectly induces PGC1beta expression by downregulating beta-catenin and derepressing c-jun. PGC1beta, in turn, functions as a PPARgamma coactivator to stimulate osteoclast differentiation. Complementarily, PPARgamma also induces ERRalpha expression, which coordinates with PGC1beta to enhance mitochondrial biogenesis and osteoclast function. ERRalpha knockout mice exhibit osteoclast defects, revealing ERRalpha as an important regulator of osteoclastogenesis. Strikingly, PGC1beta deletion in osteoclasts confers complete resistance to rosiglitazone-induced bone loss. These findings identify PGC1beta as an essential mediator for the PPARgamma stimulation of osteoclastogenesis by targeting both PPARgamma itself and ERRalpha, thus activating two distinct transcriptional programs.


Assuntos
Reabsorção Óssea/induzido quimicamente , Hipoglicemiantes/toxicidade , Osteoclastos/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/toxicidade , Transativadores/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Rosiglitazona , Transativadores/genética , Fatores de Transcrição , beta Catenina/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...