Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 153: 103898, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587808

RESUMO

Mosquitoes are responsible for the death and debilitation of millions of people every year due to the pathogens they can transmit while blood feeding. While a handful of mosquitoes, namely those in the Aedes, Anopheles, and Culex genus, are the dominant vectors, many other species belonging to different genus are also involved in various pathogen cycles. Sabethes cyaneus is one of the many poorly understood mosquito species involved in the sylvatic cycle of Yellow Fever Virus. Here, we report the expression profile differences between male and female of Sa.cyaneus salivary glands (SGs). We find that female Sa.cyaneus SGs have 165 up-regulated and 18 down-regulated genes compared to male SGs. Most of the up-regulated genes have unknown functions, however, odorant binding proteins, such as those in the D7 protein family, and mucins were among the top 30 genes. We also performed various in vitro activity assays of female SGs. In the activity analysis we found that female SG extracts inhibit coagulation by blocking factor Xa and has endonuclease activity. Knowledge about mosquitoes and their physiology are important for understanding how different species differ in their ability to feed on and transmits pathogens to humans. These results provide us with an insight into the Sabethes SG activity and gene expression that expands our understanding of mosquito salivary glands.


Assuntos
Aedes , Anopheles , Humanos , Masculino , Feminino , Animais , Transcriptoma , Mosquitos Vetores , Glândulas Salivares/metabolismo , Anopheles/genética , Anopheles/metabolismo , Aedes/genética
2.
J Biol Chem ; 298(6): 101971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460690

RESUMO

To successfully feed on blood, hematophagous arthropods must combat the host's natural hemostatic and inflammatory responses. Salivary proteins of blood-feeding insects such as mosquitoes contain compounds that inhibit these common host defenses against blood loss, including vasoconstriction, platelet aggregation, blood clotting, pain, and itching. The D7 proteins are some of the most abundantly expressed proteins in female mosquito salivary glands and have been implicated in inhibiting host hemostatic and inflammatory responses. Anopheles gambiae, the primary vector of malaria, expresses three D7 long-form and five D7 short-form proteins. Previous studies have characterized the AngaD7 short-forms, but the D7 long-form proteins have not yet been characterized in detail. Here, we characterized the A. gambiae D7 long-forms by first determining their binding kinetics to hemostatic agonists such as leukotrienes and serotonin, which are potent activators of vasoconstriction, edema formation, and postcapillary venule leakage, followed by ex vivo functional assays. We found that AngaD7L1 binds leukotriene C4 and thromboxane A2 analog U-46619; AngaD7L2 weakly binds leukotrienes B4 and D4; and AngaD7L3 binds serotonin. Subsequent functional assays confirmed AngaD7L1 inhibits U-46619-induced platelet aggregation and vasoconstriction, and AngaD7L3 inhibits serotonin-induced platelet aggregation and vasoconstriction. It is therefore possible that AngaD7L proteins counteract host hemostasis by scavenging these mediators. Finally, we demonstrate that AngaD7L2 had a dose-dependent anticoagulant effect via the intrinsic coagulation pathway by interacting with factors XII, XIIa, and XI. The uncovering of these interactions in the present study will be essential for comprehensive understanding of the vector-host biochemical interface.


Assuntos
Anopheles , Hemostáticos , Proteínas de Insetos/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animais , Anopheles/química , Feminino , Hemostáticos/metabolismo , Leucotrienos/metabolismo , Malária , Mosquitos Vetores , Serotonina/metabolismo , Serotonina/farmacologia
3.
FEBS J ; 288(6): 2014-2029, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32799410

RESUMO

Aedes aegypti saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis. Among these salivary proteins are the D7s, which are highly abundant and have been shown to act as scavengers of biogenic amines and eicosanoids. In this work, we performed comparative structural modeling, characterized the binding capabilities, and assessed the physiological functions of the Ae. aegypti salivary protein AeD7L2 compared to the well-characterized AeD7L1. AeD7L1 and AeD7L2 show different binding affinities to several biogenic amines and biolipids involved in host hemostasis. Interestingly, AeD7L2 tightly binds U-46619, the stable analog of thromboxane A2 (KD  = 69.4 nm), which is an important platelet aggregation mediator, while AeD7L1 shows no binding. We tested the ability of these proteins to interfere with the three branches of hemostasis: vasoconstriction, platelet aggregation, and blood coagulation. Pressure myography experiments showed these two proteins reversed isolated resistance artery vasoconstriction induced by either norepinephrine or U-46619. These proteins also inhibited platelet aggregation induced by low doses of collagen or U-46619. However, D7 long proteins did not affect blood coagulation. The different ligand specificity and affinities of AeD7L1 and AeD7L2 matched our experimental observations from studying their effects on vasoconstriction and platelet aggregation, which confirm their role in preventing host hemostasis. This work highlights the complex yet highly specific biological activities of mosquito salivary proteins and serves as another example of the sophisticated biology underlying arthropod blood feeding.


Assuntos
Aedes/metabolismo , Dengue/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Aedes/fisiologia , Aedes/virologia , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/fisiologia , Dengue/virologia , Vírus da Dengue/fisiologia , Comportamento Alimentar/fisiologia , Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Modelos Moleculares , Mosquitos Vetores/virologia , Agregação Plaquetária/fisiologia , Ligação Proteica , Conformação Proteica , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Homologia de Sequência de Aminoácidos
4.
Biomolecules ; 10(10)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992542

RESUMO

Mosquitoes inject saliva into the host skin to facilitate blood meal acquisition through active compounds that prevent hemostasis. D7 proteins are among the most abundant components of the mosquito saliva and act as scavengers of biogenic amines and eicosanoids. Several members of the D7 family have been characterized at the biochemical level; however, none have been studied thus far in Aedes albopictus, a permissive vector for several arboviruses that causes extensive human morbidity and mortality. Here, we report the binding capabilities of a D7 long form protein from Ae. albopictus (AlboD7L1) by isothermal titration calorimetry and compared its model structure with previously solved D7 structures. The physiological function of AlboD7L1 was demonstrated by ex vivo platelet aggregation and in vivo leukocyte recruitment experiments. AlboD7L1 binds host hemostasis agonists, including biogenic amines, leukotrienes, and the thromboxane A2 analog U-46619. AlboD7L1 protein model predicts binding of biolipids through its N-terminal domain, while the C-terminal domain binds biogenic amines. We demonstrated the biological function of AlboD7L1 as an inhibitor of both platelet aggregation and cell recruitment of neutrophils and eosinophils. Altogether, this study reinforces the physiological relevance of the D7 salivary proteins as anti-hemostatic and anti-inflammatory molecules that help blood feeding in mosquitoes.


Assuntos
Aedes/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/genética , Proteínas de Insetos/química , Animais , Hemostasia/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Leucócitos/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Saliva/química , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/farmacologia
5.
Nat Commun ; 11(1): 2911, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518308

RESUMO

During blood-feeding, mosquito saliva is injected into the skin to facilitate blood meal acquisition. D7 proteins are among the most abundant components of the mosquito saliva. Here we report the ligand binding specificity and physiological relevance of two D7 long proteins from Culex quinquefasciatus mosquito, the vector of filaria parasites or West Nile viruses. CxD7L2 binds biogenic amines and eicosanoids. CxD7L1 exhibits high affinity for ADP and ATP, a binding capacity not reported in any D7. We solve the crystal structure of CxD7L1 in complex with ADP to 1.97 Å resolution. The binding pocket lies between the two protein domains, whereas all known D7s bind ligands either within the N- or the C-terminal domains. We demonstrate that these proteins inhibit hemostasis in ex vivo and in vivo experiments. Our results suggest that the ADP-binding function acquired by CxD7L1 evolved to enhance blood-feeding in mammals, where ADP plays a key role in platelet aggregation.


Assuntos
Difosfato de Adenosina/química , Culex/química , Mosquitos Vetores , Proteínas e Peptídeos Salivares/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Biologia Computacional/métodos , Cristalografia por Raios X , Eicosanoides/química , Comportamento Alimentar , Perfilação da Expressão Gênica , Hemostasia , Humanos , Proteínas de Insetos/química , Ligantes , Nucleotídeos/química , Agregação Plaquetária , Ligação Proteica , Domínios Proteicos , Saliva/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...