Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Atmos Pollut Res ; 11(6): 81-86, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699520

RESUMO

Select volatile organic compounds (VOCs) were measured in the vicinity of chemical facilities and other operations in the Rubbertown industrial area of Louisville, Kentucky (USA) using modified EPA Methods 325A/B passive sampler tubes. Two-week, time-integrated passive samplers were deployed at ten sites which were aggregated into three site groups of varying distances from the Rubbertown area facilities. In comparison to canister data from 2001 to 2005, two of the sites suggested generally lower current VOC levels. Good precision was obtained from the duplicate tubes (≤ 12%) for benzene, toluene, ethylbenzene, and xylene isomers (BTEX), styrene, 1,3-butadiene, perchloroethylene, and other trace VOCs. BTEX, styrene, and 1,3-butadiene concentrations were statistically significantly higher at two site groups near Rubbertown sources than the site group farther away. As found in a similar study in South Philadelphia, BTEX concentrations were also lower for sites farther from a source, though the decline was less pronounced on a percentage basis in Rubbertown. These results suggest that EPA Methods 325A/B can be useful to assess VOC gradients for emissions from chemical facilities besides fenceline benzene levels from refineries.

2.
Arterioscler Thromb Vasc Biol ; 38(1): 275-282, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191927

RESUMO

OBJECTIVE: Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS: We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS: Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.


Assuntos
Cateterismo Cardíaco , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/epidemiologia , Características de Residência , Poluição Relacionada com o Tráfego/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , North Carolina/epidemiologia , Prevalência , Medição de Risco , Fatores de Risco
3.
J Air Waste Manag Assoc ; 68(2): 170-175, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29244616

RESUMO

Select volatile organic compounds (VOCs) in ambient air were measured at four fenceline sites at a petroleum refinery in Whiting, IN, using modified EPA Method 325 A/B with passive tubes and EPA Compendium Method TO-15 with canister samplers. One-week, time-integrated samplers were deployed for 8 weeks with tubes and canister samplers deployed in duplicate. Good precision was obtained from the duplicate tubes (<7%) and duplicate canisters (≤10%) for BTEX, perchloroethylene, and styrene. The tubes yielded statistically significantly higher concentrations than canisters for benzene, toluene, ethylbenzene, and m,p-xylene. However, all differences were estimated to be <0.1 ppbv. No concentration differences among the four Whiting sites were found for any of the VOCs. IMPLICATIONS: Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at refinery fenceline locations. This pilot study presents VOC data applying a modified version of EPA Method 325 A/B and its comparison to EPA Compendium Method TO-15 canister samplers at four refinery fenceline sites. The findings from this study provide additional confidence in application of the tube method at refineries to ascertain VOC source influence since tube and canister samplers were comparable and good precision was obtained from duplicate sampling for both methods. No overall difference in these reported VOC concentrations was found between Whiting sites for tubes or canisters.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Indústria de Petróleo e Gás , Compostos Orgânicos Voláteis/análise , Indiana , Projetos Piloto , Compostos Orgânicos Voláteis/química
4.
Atmos Environ (1994) ; 163: 99-106, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505204

RESUMO

A sample integrity evaluation and an interlaboratory comparison were conducted in application of U.S. Environmental Protection Agency (EPA) Methods 325A and 325B for diffusively monitoring benzene and other selected volatile organic compounds (VOCs) using Carbopack X sorbent tubes. To evaluate sample integrity, VOC samples were refrigerated for up to 240 days and analyzed using thermal desorption/gas chromatography-mass spectrometry at the EPA Office of Research and Development laboratory in Research Triangle Park, NC, USA. For the interlaboratory comparison, three commercial analytical laboratories were asked to follow Method 325B when analyzing samples of VOCs that were collected in field and laboratory settings for EPA studies. Overall results indicate that the selected VOCs collected diffusively on sorbent tubes generally were stable for 6 months or longer when samples were refrigerated. This suggests the specified maximum 30-day storage time of VOCs collected diffusively on Carbopack X passive samplers and analyzed using Method 325B might be able to be relaxed. Interlaboratory comparison results were in agreement for the challenge samples collected diffusively in an exposure chamber in the laboratory, with most measurements within ±25% of the theoretical concentration. Statistically significant differences among laboratories for ambient challenge samples were small, less than 1 part per billion by volume (ppbv). Results from all laboratories exhibited good precision and generally agreed well with each other.

5.
J Air Waste Manag Assoc ; 66(5): 492-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26828464

RESUMO

UNLABELLED: Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites, which were aggregated into five site groups of varying distances from the refinery. Benzene, toluene, ethylbenzene, and xylene isomers (BTEX) and styrene concentrations were higher near the refinery's fenceline than for groups at the refinery's south edge, mid-distance, and farther removed locations. The near fenceline group was significantly higher than the refinery's north edge group for benzene and toluene but not for ethylbenzene or xylene isomers; styrene was lower at the near fenceline group versus the north edge group. For BTEX and styrene, the magnitude of estimated differences generally increased when proceeding through groups ever farther away from the petroleum refining. Perchloroethylene results were not suggestive of an influence from refining. These results suggest that emissions from the refinery complex contribute to higher concentrations of BTEX species and styrene in the vicinity of the plant, with this influence declining as distance from the petroleum refining increases. IMPLICATIONS: Passive sampling methodology for VOCs as discussed here is employed in recently enacted U.S. Environmental Protection Agency Methods 325A/B for determination of benzene concentrations at refinery fenceline locations. Spatial gradients of VOC concentration near the refinery fenceline were discerned in an area containing traffic and other VOC-related sources. Though limited, these findings can be useful in application of the method at such facilities to ascertain source influence.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Análise Espacial , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/instrumentação , Philadelphia
6.
J Air Waste Manag Assoc ; 66(4): 412-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26771215

RESUMO

UNLABELLED: A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. IMPLICATIONS: Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.


Assuntos
Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Compostos Orgânicos Voláteis/análise , Colorado , Projetos Piloto , Texas
7.
Environ Health Perspect ; 123(10): 1007-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25807578

RESUMO

BACKGROUND: The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health. OBJECTIVE: We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization. METHODS: We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES). RESULTS: An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (ß = 2.17 mg/dL; 95% CI: -0.24, 4.59), and the association appeared to be limited to women (ß = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with ß = 0.14 mg/dL; 95% CI: -3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; ß = 8.36; 95% CI: -0.15, 16.9 and ß = 5.98; 95% CI: -3.96, 15.9, for TEZ 5 and 6, respectively). CONCLUSION: Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C.


Assuntos
Poluentes Atmosféricos/toxicidade , Glicemia/metabolismo , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental , Emissões de Veículos/toxicidade , Adulto , Idoso , Cateterismo Cardíaco/estatística & dados numéricos , Doenças Cardiovasculares/induzido quimicamente , Estudos Transversais , Jejum , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , North Carolina/epidemiologia , Características de Residência , Fatores de Risco
8.
J Expo Sci Environ Epidemiol ; 22(5): 522-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22781436

RESUMO

Two deterministic models (US EPA's Office of Pesticide Programs Residential Standard Operating Procedures (OPP Residential SOPs) and Draft Protocol for Measuring Children's Non-Occupational Exposure to Pesticides by all Relevant Pathways (Draft Protocol)) and four probabilistic models (CARES(®), Calendex™, ConsExpo, and SHEDS) were used to estimate aggregate residential exposures to pesticides. The route-specific exposure estimates for young children (2-5 years) generated by each model were compared to evaluate data inputs, algorithms, and underlying assumptions. Three indoor exposure scenarios were considered: crack and crevice, fogger, and flying insect killer. Dermal exposure estimates from the OPP Residential SOPs and the Draft Protocol were 4.75 and 2.37 mg/kg/day (crack and crevice scenario) and 0.73 and 0.36 mg/kg/day (fogger), respectively. The dermal exposure estimates (99th percentile) for the crack and crevice scenario were 16.52, 12.82, 3.57, and 3.30 mg/kg/day for CARES, Calendex, SHEDS, and ConsExpo, respectively. Dermal exposure estimates for the fogger scenario from CARES and Calendex (1.50 and 1.47 mg/kg/day, respectively) were slightly higher than those from SHEDS and ConsExpo (0.74 and 0.55 mg/kg/day, respectively). The ConsExpo derived non-dietary ingestion estimates (99th percentile) under these two scenarios were higher than those from SHEDS, CARES, and Calendex. All models produced extremely low exposure estimates for the flying insect killer scenario. Using similar data inputs, the model estimates by route for these scenarios were consistent and comparable. Most of the models predicted exposures within a factor of 5 at the 50th and 99th percentiles. The differences identified are explained by activity assumptions, input distributions, and exposure algorithms.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Modelos Estatísticos , Praguicidas/efeitos adversos , Algoritmos , Pré-Escolar , Humanos , Características de Residência
9.
J Environ Monit ; 13(4): 999-1007, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327247

RESUMO

Passive air sampling for nitrogen dioxide (NO(2)) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established to assess intra-urban gradients of air pollutants to evaluate the impact of traffic and urban emissions on air quality. Ambient air monitoring and GIS data from spatially representative fire station sites were collected to assess spatial variability. Pairwise comparisons were conducted on the ambient data from the selected sites based on city section. These weeklong samples yielded NO(2) and benzene levels that were generally higher during the winter than the summer. With respect to the location within the city, the central section of Dallas was generally higher for NO(2) and benzene than north and south. Land use regression (LUR) results revealed spatial gradients in NO(2) and selected VOCs in the central and some northern areas. The process used to select spatially representative sites for air sampling and the results of analyses of coarse- and fine-scale spatial variability of air pollutants on a seasonal basis provide insights to guide future ambient air exposure studies in assessing intra-urban gradients and traffic impacts.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Texas
10.
J Environ Monit ; 11(12): 2122-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20024009

RESUMO

The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) field study examined indoor and outdoor exposure to traffic-generated air pollution by studying the individual processes of generation of traffic emissions, transport and dispersion of air contaminants along a roadway, and infiltration of the contaminants into a residence. Real-time instrumentation was used to obtain highly resolved time-series concentration profiles for a number of air pollutants. The B-TRAPPED field study was conducted in the residential Sunset Park neighborhood of Brooklyn, NY, USA, in May 2005. The neighborhood contained the Gowanus Expressway (Interstate 278), a major arterial road (4(th) Avenue), and residential side streets running perpendicular to the Gowanus Expressway and 4(th) Avenue. Synchronized measurements were obtained inside a test house, just outside the test house façade, and along the urban residential street canyon on which the house was located. A trailer containing Federal Reference Method (FRM) and real-time monitors was located next to the Gowanus Expressway to assess the source. Ultrafine particulate matter (PM), PM(2.5), nitrogen oxides (NO(x)), sulfur dioxide (SO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), temperature, relative humidity, and wind speed and direction were monitored. Different sampling schemes were devised to focus on dispersion along the street canyon or infiltration into the test house. Results were obtained for ultrafine PM, PM(2.5), criteria gases, and wind conditions from sampling schemes focused on street canyon dispersion and infiltration. For comparison, the ultrafine PM and PM(2.5) results were compared with an existing data set from the Los Angeles area, and the criteria gas data were compared with measurements from a Vancouver epidemiologic study. Measured ultrafine PM and PM(2.5) concentration levels along the residential urban street canyon and at the test house façade in Sunset Park were demonstrated to be comparable to traffic levels at an arterial road and slightly higher than those in a residential area of Los Angeles. Indoor ultrafine PM levels were roughly 3-10 times lower than outdoor levels, depending on the monitor location. CO, NO(2), and SO(2) levels were shown to be similar to values that produced increased risk of chronic obstructive pulmonary disease hospitalizations in the Vancouver studies.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Material Particulado/análise , Emissões de Veículos/análise , Poluição do Ar em Ambientes Fechados/análise , Monóxido de Carbono/análise , Cinética , Modelos Teóricos , Cidade de Nova Iorque , Dióxido de Nitrogênio/análise , Dióxido de Enxofre/análise , Vento
11.
Environ Res ; 109(8): 943-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19733844

RESUMO

On August 29, 2005, Hurricane Katrina made landfall near New Orleans, Louisiana, a major metroplex with petroleum industries. In response to the potential impact of the storm on air quality and to assess the exposures to toxic air pollutants of public health concern, the United States Environmental Protection Agency conducted passive monitoring of air toxics for three months, starting in late October 2005 through early February 2006, at up to 18 sites in the New Orleans area affected by Hurricane Katrina. The overall results of the passive ambient monitoring are summarized with the concentrations for the twenty-nine observed volatile organic chemicals, which include benzene, toluene, ethylbenzene, and xylenes, and the measured concentrations are compared with available health-based screening levels. The results of passive monitoring are also compared with those of the collocated canister sampling at one of the sites. The overall results showed that the outdoor levels of atmospheric volatile organic chemcals in the post-Katrina New Orleans area were very low and far below the available screening levels. The results also confirm the effectiveness of passive monitoring in a large geographical area where conventional methods are not feasible, electrical power is not available, and the need for sampling is urgent, as in the aftermath of natural disasters and other catastrophes.


Assuntos
Poluentes Atmosféricos/análise , Tempestades Ciclônicas , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Louisiana , Controle de Qualidade
12.
Sci Total Environ ; 407(16): 4642-51, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19467697

RESUMO

Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Dióxido de Nitrogênio/análise , Compostos Orgânicos/análise , Instituições Acadêmicas/normas , Ar/análise , Ar/normas , Cidades , Monitoramento Ambiental/estatística & dados numéricos , Sistemas de Informação Geográfica , Michigan , Material Particulado/análise , Saúde da População Urbana , Urbanização
13.
J Environ Monit ; 11(1): 220-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19137161

RESUMO

This study evaluates performance of nitrogen dioxide (NO2) and volatile organic compound (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005. Ogawa passive NO2 samplers and custom-made, re-useable Perkin-Elmer (PE) tubes with Carbopack X sorbent for VOCs were deployed under week-long sampling periods for six weeks. Precise results (5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was also good for duplicate PE tubes for benzene, toluene, ethylbenzene, and xylene isomers (BTEX species, all < or = 6% RSD). As seen in previous studies, comparison of Ogawa NO2 samplers with reference chemiluminescence measurements suggested good agreement. Generally good agreement was also found between the PE tubes and reference methods for BTEX species.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Dióxido de Nitrogênio/análise , Compostos Orgânicos Voláteis/análise , Adsorção , Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Michigan , Dióxido de Nitrogênio/química , Reprodutibilidade dos Testes , Fatores de Tempo , Compostos Orgânicos Voláteis/química
14.
Environ Monit Assess ; 128(1-3): 369-79, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17057989

RESUMO

In the summer of 2003, ambient air concentrations of volatile organic compounds (VOCs) were measured at 12 sites within a 3-km radius in Deer Park, Texas near Houston. The purpose of the study was to assess local spatial influence of traffic and other urban sources and was part of a larger investigation of VOC spatial and temporal heterogeneity influences in selected areas of Houston. Seventy 2-h samples were collected using passive organic vapor monitors. Most measurements of 13 VOC species were greater than the method detection limits. Samplers were located at 10 residential sites, a regulatory air monitoring station, and a site located at the centroid of the census tract in which the regulatory station was located. For residential sites, sampler placement locations (e. g., covered porch vs. house eaves) had no effect on concentration with the exception of methyl tertiary-butyl ether (MTBE). Relatively high correlations (Pearson r > 0.8) were found between toluene, ethylbenzene, and o,m,p-xylenes suggesting petroleum-related influence. Chloroform was not correlated with these species or benzene (Pearson r < 0.35) suggesting a different source influence, possibly from process-related activities. As shown in other spatial studies, wind direction relative to source location had an effect on VOC concentrations.


Assuntos
Compostos Orgânicos/análise , Sensibilidade e Especificidade , Texas , Volatilização
15.
Environ Sci Technol ; 38(8): 2317-27, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15116836

RESUMO

The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic compounds (VOCs) were investigated using the multivariate receptor model UNMIX and the effective variance least squares receptor model known as Chemical Mass Balance (CMB, Version 8.0). As expected from PAMS measurements, overall findings from data screening as well as both receptor models confirmed that mobile sources were the major source of VOCs. Comparison of hourly source contribution estimates (SCEs) from the two receptor models revealed significant differences in motor vehicle exhaust and evaporative gasoline contributions. However, the motor vehicle exhaust contributions were highly correlated with each other. Motor vehicle exhaust was also correlated with the ultrafine and accumulation mode particle count, which suggests that motor vehicle exhaust is a source of these particles at the measurement site. Wind sector analyses were performed using the SCE and pollutant data to assess source location of VOCs, particle count, and criteria pollutants. Results from this study have application to source apportionment studies and mobile source emission control strategies that are ongoing in this air shed.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Emissões de Veículos/análise , Vento , Cidades , Clima Desértico , Análise Multivariada , Compostos Orgânicos/análise , Tamanho da Partícula , Volatilização
16.
J Air Waste Manag Assoc ; 54(3): 307-19, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15068008

RESUMO

This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (< 5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (> or = 77% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs. However, except for toluene, OVM BTEX measurements generally exceeded their continuous counterparts with a mean bias of 5-10%. Although interpretation of the study results was limited due to small sample sizes, diffusion barrier influences caused by shelters that housed OVMs and differences in sampling heights between OVMs and auto-GC inlet may explain the overestimation.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Estatísticos , Dióxido de Nitrogênio/análise , Automação , Medições Luminescentes , Compostos Orgânicos/análise , Sensibilidade e Especificidade , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...