Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 117(16): 4680-95, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23383860

RESUMO

In order to identify optimal conditions for singlet fission, we are examining the photophysics of 1,3-diphenylisobenzofuran (1) dimers covalently coupled in various ways. In the two dimers studied presently, the coupling is weak. The subunits are linked via the para position of one of the phenyl substituents, in one case (2) through a CH2 linker and in the other (3) directly, but with methyl substituents in ortho positions forcing a nearly perpendicular twist between the two joint phenyl rings. The measurements are accompanied with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Although in neat solid state, 1 undergoes singlet fission with a rate constant higher than 10(11) s(-1); in nonpolar solutions of 2 and 3, the triplet formation rate constant is less than 10(6) s(-1) and fluorescence is the only significant event following electronic excitation. In polar solvents, fluorescence is weaker because the initial excited singlet state S1 equilibrates by sub-nanosecond charge transfer with a nonemissive dipolar species in which a radical cation of 1 is attached to a radical anion of 1. Most of this charge transfer species decays to S0, and some is converted into triplet T1 with a rate constant near 10(8) s(-1). Experimental uncertainties prevent an accurate determination of the number of T1 excitations that result when a single S1 excitation changes into triplet excitation. It would be one if the charge-transfer species undergoes ordinary intersystem crossing and two if it undergoes the second step of two-step singlet fission. The triplet yield maximizes below room temperature to a value of roughly 9% for 3 and 4% for 2. Above ∼360 K, some of the S1 molecules of 3 are converted into an isomeric charge-transfer species with a shorter lifetime, possibly with a twisted intramolecular charge transfer (TICT) structure. This is not observed in 2.

2.
Annu Rev Phys Chem ; 64: 361-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298243

RESUMO

A survey is provided of recent progress in the understanding of singlet fission, a spin-allowed process in which a singlet excited molecule shares its energy with a ground-state neighbor to produce two triplet excited molecules. It has been observed to occur in single-crystal, polycrystalline, and amorphous solids, on timescales from 80 fs to 25 ps, producing triplet yields as high as 200%. Photovoltaic devices using the effect have shown external quantum efficiencies in excess of 100%. Almost all the efficient materials are alternant hydrocarbons of the acene series or their simple derivatives, and it is argued that a wider structural variety would be desirable. The current state of the development of molecular structure design rules, based on first-principles theoretical considerations, is described along with initial examples of implementation.

3.
Chem Rev ; 110(11): 6891-936, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21053979
4.
J Phys Chem B ; 114(45): 14223-32, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20025238

RESUMO

Singlet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons, has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules. Previous studies have identified promising building blocks for singlet fission in molecular systems, but little work has investigated how these individual chromophores should be combined to maximize triplet yield. We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield. We use density functional theory to compute the electron transfer matrix element and the thermodynamics of fission for several promising chromophore pairs and find a trade-off between the desire to maximize this element and the desire to keep the singlet fission process exoergic. We identify promising molecular systems for singlet fission and suggest future experiments.

5.
J Phys Chem A ; 114(3): 1457-73, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20025258

RESUMO

Single crystal molecular structure and solution photophysical properties are reported for 1,3-diphenylisobenzofuran (1), of interest as a model compound in studies of singlet fission. For the ground state of 1 and of its radical cation (1(+*)) and anion (1(-*)), we report the UV-visible absorption spectra, and for neutral 1, also the magnetic circular dichroism (MCD) and the decomposition of the absorption spectrum into purely polarized components, deduced from fluorescence polarization. These results were used to identify a series of singlet excited states. For the first excited singlet and triplet states of 1, the transient visible absorption spectra, S(1) --> S(x) and sensitized T(1) --> T(x), and single exponential lifetimes, tau(F) = approximately 5.3 ns and tau(T) = approximately 200 micros, are reported. The spectra and lifetimes of S(1) --> S(0) fluorescence and sensitized T(1) --> T(x) absorption of 1 were obtained in a series of solvents, as was the fluorescence quantum yield, Phi(F) = 0.95-0.99. No phosphorescence has been detected. The first triplet excitation energy of solid 1 (11,400 cm(-1)) was obtained by electron energy loss spectroscopy, in agreement with previously reported solution values. The fluorescence excitation spectrum suggests an onset of a nonradiative channel at approximately 37,000 cm(-1). Excitation energies and relative transition intensities are in agreement with those of ab initio (CC2) calculations after an empirical 3000 cm(-1) adjustment of the initial state energy to correct differentially for a better quality description of the initial relative to the terminal state of an absorption transition. The interpretation of the MCD spectrum used the semiempirical PPP method, whose results for the S(0) --> S(x) spectrum require no empirical adjustment and are otherwise nearly identical with the CC2 results in all respects including the detailed nature of the electronic excitation. The ground state geometry of 1 was also calculated by the MP2, B3LYP, and CAS methods. The calculations provided a prediction of changes of molecular geometry upon excitation or ionization and permitted an interpretation of the spectra in terms of molecular orbitals involved. Computations suggest that 1 can exist as two nearly isoenergetic conformers of C(2) or C(s) symmetry. Linear dichroism measurements in stretched polyethylene provide evidence for their existence and show that they orient to different degrees, permitting a separation of their spectra in the region of the purely polarized first absorption band. Their excitation energies are nearly identical, but the Franck-Condon envelopes of their first transition differ to a surprising degree.


Assuntos
Benzofuranos/química , Elétrons , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Fotoquímica , Teoria Quântica , Espectrofotometria Ultravioleta , Temperatura
6.
J Am Chem Soc ; 130(22): 6955-63, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18461943

RESUMO

We have investigated the paraelectric-to-ferroelectric phase transition of various sizes of nanocrystalline barium titanate (BaTiO3) by using temperature-dependent Raman spectroscopy and powder X-ray diffraction (XRD). Synchrotron X-ray scattering has been used to elucidate the room temperature structures of particles of different sizes by using both Rietveld refinement and pair distribution function (PDF) analysis. We observe the ferroelectric tetragonal phase even for the smallest particles at 26 nm. By using temperature-dependent Raman spectroscopy and XRD, we find that the phase transition is diffuse in temperature for the smaller particles, in contrast to the sharp transition that is found for the bulk sample. However, the actual transition temperature is almost unchanged. Rietveld and PDF analyses suggest increased distortions with decreasing particle size, albeit in conjunction with a tendency to a cubic average structure. These results suggest that although structural distortions are robust to changes in particle size, what is affected is the coherency of the distortions, which is decreased in the smaller particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...