Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(2): zqae003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486977

RESUMO

G protein regulation by regulators of G protein signaling (RGS) proteins play a key role in vascular tone maintenance. The loss of Gi/o and Gq/11 regulation by RGS2 and RGS5 in non-pregnant mice is implicated in augmented vascular tone and decreased uterine blood flow (UBF). RGS2 and 5 are closely related and co-expressed in uterine arteries (UA). However, whether and how RGS2 and 5 coordinate their regulatory activities to finetune G protein signaling and regulate vascular tone are unclear. Here, we determined how the integrated activity of RGS2 and 5 modulates vascular tone to promote UBF. Using ultrasonography and pressure myography, we examined uterine hemodynamics and myogenic tone (MT) of UA of wild type (WT), Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO mice. We found that MT was reduced in Rgs5-/- relative to WT or Rgs2-/- UA. Activating Gi/o with dopamine increased, whereas exogenous cAMP decreased MT in Rgs5-/- UA to levels in WT UA. Dual deletion of Rgs2 and 5 abolished the reduced MT due to the absence of Rgs5 and enhanced dopamine-induced Gi/o effects in Rgs2/5 dbKO UA. Conversely, and as in WT UA, Gi/o inhibition with pertussis toxin or exogenous cAMP decreased MT in Rgs2/5 dbKO to levels in Rgs5-/- UA. Inhibition of phosphodiesterases (PDE) concentration-dependently decreased and normalized MT in all genotypes, and blocked dopamine-induced MT augmentation in Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO UA. We conclude that Gi/o augments UA MT in the absence of RGS2 by a novel mechanism involving PDE-mediated inhibition of cAMP-dependent vasodilatation..


Assuntos
Dopamina , Transdução de Sinais , Camundongos , Animais , Constrição , Proteínas de Ligação ao GTP/metabolismo , Hemodinâmica
2.
J Biol Chem ; 299(8): 105027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423298

RESUMO

Metabolism controls cellular phenotype and fate. In this report, we demonstrate that nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that regulates developmental stem cell transitions and tumor progression, is highly expressed in human idiopathic pulmonary fibrosis (IPF) lungs, and is induced by the pro-fibrotic cytokine, transforming growth factor-ß1 (TGF-ß1) in lung fibroblasts. NNMT silencing reduces the expression of extracellular matrix proteins, both constitutively and in response to TGF-ß1. Furthermore, NNMT controls the phenotypic transition from homeostatic, pro-regenerative lipofibroblasts to pro-fibrotic myofibroblasts. This effect of NNMT is mediated, in part, by the downregulation of lipogenic transcription factors, TCF21 and PPARγ, and the induction of a less proliferative but more differentiated myofibroblast phenotype. NNMT confers an apoptosis-resistant phenotype to myofibroblasts that is associated with the downregulation of pro-apoptotic members of the Bcl-2 family, including Bim and PUMA. Together, these studies indicate a critical role for NNMT in the metabolic reprogramming of fibroblasts to a pro-fibrotic and apoptosis-resistant phenotype and support the concept that targeting this enzyme may promote regenerative responses in chronic fibrotic disorders such as IPF.


Assuntos
Miofibroblastos , Nicotinamida N-Metiltransferase , Humanos , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...