Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cogn Enhanc ; 5(3): 386-395, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485810

RESUMO

Research suggests that memorization of multisensory stimuli benefits performance compared to memorization of unisensory stimuli; however, little is known about multisensory facilitation in the context of working memory (WM) training and transfer. To investigate this, 240 adults were randomly assigned to an N-back training task that consisted of visual-only stimuli, alternating visual and auditory blocks, or audio-visual (multisensory) stimuli, or to a passive control group. Participants in the active groups completed 13 sessions of N-back training (6.7 hours in total) and all groups completed a battery of WM tasks: untrained N-back tasks, Corsi Blocks, Sequencing, and Symmetry Span. The Multisensory group showed similar training N-level gain compared to the Visual Only group, and both of these groups outperformed the Alternating group on the training task. As expected, all three active groups significantly improved on untrained visual N-back tasks compared to the Control group. In contrast, the Multisensory group showed significantly greater gains on the Symmetry Span task and to a certain extent on the Sequencing task compared to other groups. These results tentatively suggest that incorporating multisensory objects in a WM training protocol can benefit performance on the training task and potentially facilitate transfer to complex WM span tasks.

2.
Nat Commun ; 9(1): 2082, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802295

RESUMO

Acid-sensing ion channels (ASICs) evolved to sense changes in extracellular acidity with the divalent cation calcium (Ca2+) as an allosteric modulator and channel blocker. The channel-blocking activity is most apparent in ASIC3, as removing Ca2+ results in channel opening, with the site's location remaining unresolved. Here we show that a ring of rat ASIC3 (rASIC3) glutamates (Glu435), located above the channel gate, modulates proton sensitivity and contributes to the formation of the elusive Ca2+ block site. Mutation of this residue to glycine, the equivalent residue in chicken ASIC1, diminished the rASIC3 Ca2+ block effect. Atomistic molecular dynamic simulations corroborate the involvement of this acidic residue in forming a high-affinity Ca2+ site atop the channel pore. Furthermore, the reported observations provide clarity for past controversies regarding ASIC channel gating. Our findings enhance understanding of ASIC gating mechanisms and provide structural and energetic insights into this unique calcium-binding site.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Células CHO , Cátions Bivalentes/metabolismo , Cricetulus , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glicina/genética , Glicina/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Domínios Proteicos/fisiologia , Relação Estrutura-Atividade
3.
Channels (Austin) ; 8(1): 49-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24262969

RESUMO

Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a "molecular wedge" that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/farmacologia , Animais , Células CHO , Galinhas , Cricetulus , Guanidinas/farmacologia , Ligantes , Prótons , Quinazolinas/farmacologia
4.
F1000Res ; 3: 222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25664170

RESUMO

Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...