Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39057719

RESUMO

Breast cancer imposes a significant burden globally. While the survival rate is steadily improving, much remains to be elucidated. This observational, single time point, multiomic study utilizing genomics, proteomics, targeted and untargeted metabolomics, and metagenomics in a breast cancer survivor (BCS) and age-matched healthy control cohort (N = 100) provides deep molecular phenotyping of breast cancer survivors. In this study, the BCS cohort had significantly higher polygenic risk scores for breast cancer than the control group. Carnitine and hexanoyl carnitine were significantly different. Several bile acid and fatty acid metabolites were significantly dissimilar, most notably the Omega-3 Index (O3I) (significantly lower in BCS). Proteomic and metagenomic analyses identified group and pathway differences, which warrant further investigation. The database built from this study contributes a wealth of data on breast cancer survivorship where there has been a paucity, affording the ability to identify patterns and novel insights that can drive new hypotheses and inform future research. Expansion of this database in the treatment-naïve, newly diagnosed, controlling for treatment confounders, and through the disease progression, can be leveraged to profile and contextualize breast cancer and breast cancer survivorship, potentially leading to the development of new strategies to combat this disease and improve the quality of life for its victims.

2.
J Int Soc Sports Nutr ; 21(1): 2377194, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39010683

RESUMO

BACKGROUND: Military special operators, elite athletes, and others requiring uninterrupted optimal performance currently lack options for sleep and mood support without performance-inhibiting effects. Kavalactones, derived from the root of the kava plant (Piper methysticum Forst), have been shown to elevate mood and wellbeing by producing a feeling of relaxation without addiction or cognitive impairment. METHODS: In this placebo-controlled, crossover study (NCT05381025), we investigated the effects of 2 weeks of kavalactones use on cortisol (diurnal salivary), sleep (RSQ-W; Restorative Sleep Questionnaire, Weekly), mood (DASS-21; Depression Anxiety Stress Scale-21), and motivation state to expend (Move) or conserve (Rest) energy (CRAVE; Cravings for Rest and Volitional Energy Expenditure, Right Now) in a cohort of 15 healthy, physically fit young males engaged in a rigorous, two-a-day preparation class for special operations forces qualification. RESULTS: Cortisol, sleep, and mood were within normal, healthy parameters in this cohort at baseline. This remained unchanged with kavalactones use with no significant findings of clinical interest. However, a statistically similar, positive slope for within-group Move scores was seen in both groups during kavalactones loading (first group Move slope 2.25, second group Move slope 3.29, p = 0.299). This trend was seen regardless of order and with no apparent effects on the Rest metric (all p ≥ 0.05). Moreover, a significant between-group difference appeared after 1 week of kavalactones use in the first phase (p = 0.044) and persisted through the end of the first loading period (p = 0.022). Following the 10-day washout, this between-groups divergence remained significant (p = 0.038) but was reversed by 1 week after the crossover (p = 0.072), with Move scores once again statistically similar between groups and compared to baseline at study end. Furthermore, the group taking kavalactones first never experienced a significant decrease in Move motivation state (lowest mean score 21.0, highest 28.6, all p ≥ 0.05), while the group receiving kavalactones in the last 2 weeks of the study had Move scores that were statistically lower than baseline (lowest mean score 8.6, highest 25.9, all p ≤ 0.05) at all time points but the last (p = 0.063) after 2 weeks of kavalactones exposure. CONCLUSIONS: We report a novel finding that kavalactones may support performance by maintaining or rescuing the desire to expend energy in the context of significant physical and mental strain in well-conditioned individuals, even in a context of already normal cortisol, sleep, and mood.


Assuntos
Afeto , Estudos Cross-Over , Hidrocortisona , Militares , Motivação , Sono , Humanos , Masculino , Adulto Jovem , Sono/efeitos dos fármacos , Afeto/efeitos dos fármacos , Adulto , Saliva/química , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos
3.
Mol Ther Methods Clin Dev ; 29: 120-132, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37007608

RESUMO

Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy.

4.
Commun Biol ; 6(1): 370, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016073

RESUMO

Tissue clearing combined with deep imaging has emerged as a powerful technology to expand classical histological techniques. Current techniques have been optimized for imaging sparsely pigmented organs such as the mammalian brain. In contrast, melanin-rich pigmented tissue, of great interest in the investigation of melanomas, remains challenging. To address this challenge, we have developed a CRISPR-based gene editing approach that is easily incorporated into existing tissue-clearing workflows such the PACT clearing method. We term this method CRISPR-Clear. We demonstrate its applicability to highly melanin-rich B16-derived solid tumors, including one made transgenic for HER2, constituting one of very few syngeneic mouse tumors that can be used in immunocompetent models. We demonstrate the utility in detailed tumor characterization by staining for targeting antibodies and nanoparticles, as well as expressed fluorescent proteins. With CRISPR-Clear we have unprecedented access to optical interrogation in considerable portions of intact melanoma tissue for stained surface markers, expressed fluorescent proteins, of subcellular compartments, and of the vasculature.


Assuntos
Melaninas , Melanoma , Camundongos , Animais , Melaninas/metabolismo , Diagnóstico por Imagem , Melanoma/patologia , Encéfalo/metabolismo , Corantes , Mamíferos
5.
Sci Transl Med ; 14(653): eabm9043, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857639

RESUMO

T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-γ (IFN-γ)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a+ NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-γ-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a+ CXCR6+ NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance.


Assuntos
Integrina alfa1 , Neoplasias , Animais , Células Dendríticas , Imunoterapia , Integrina alfa1/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001602

RESUMO

The goal of cancer-drug delivery is to achieve high levels of therapeutics within tumors with minimal systemic exposure that could cause toxicity. Producing biologics directly in situ where they diffuse and act locally is an attractive alternative to direct administration of recombinant therapeutics, as secretion by the tumor itself provides high local concentrations that act in a paracrine fashion continuously over an extended duration (paracrine delivery). We have engineered a SHielded, REtargeted ADenovirus (SHREAD) gene therapy platform that targets specific cells based on chosen surface markers and converts them into biofactories secreting therapeutics. In a proof of concept, a clinically approved antibody is delivered to orthotopic tumors in a model system in which precise biodistribution can be determined using tissue clearing with passive CLARITY technique (PACT) with high-resolution three-dimensional imaging and feature quantification within the tumors made transparent. We demonstrate high levels of tumor cell-specific transduction and significant and durable antibody production. PACT gives a localized quantification of the secreted therapeutic and allows us to directly observe enhanced pore formation in the tumor and destruction of the intact vasculature. In situ production of the antibody led to an 1,800-fold enhanced tumor-to-serum antibody concentration ratio compared to direct administration. Our detailed biochemical and microscopic analyses thus show that paracrine delivery with SHREAD could enable the use of highly potent therapeutic combinations, including those with systemic toxicity, to reach adequate therapeutic windows.


Assuntos
Anticorpos/farmacologia , Sistemas de Liberação de Medicamentos , Terapia Genética , Neoplasias/tratamento farmacológico , Adenoviridae/genética , Animais , Anticorpos/genética , Anticorpos/imunologia , Antígenos de Superfície/genética , Antineoplásicos/farmacologia , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Imageamento Tridimensional , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Comunicação Parácrina/efeitos dos fármacos
7.
Mol Ther Methods Clin Dev ; 20: 572-586, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33665227

RESUMO

Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.

8.
MAbs ; 12(1): 1792084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32643525

RESUMO

Gene therapy approaches now allow for the production of therapeutic antibodies by healthy or cancerous human tissues directly in vivo, and, with an increasing number of gene delivery methods available, the cell type for expression can be chosen. Yet, little is known about the biophysical changes introduced by expressing antibodies from producer cells or tissues targeted by gene therapy approaches, nor about the consequences for the type of glycosylation. The effects of different glycosylation on therapeutic antibodies have been well studied by controlling their glycan compositions in non-human mammalian production cells, i.e., Chinese hamster ovary cells. Therefore, we investigated the glycosylation state of clinically approved antibodies secreted from cancer tissues frequently targeted by in vivo gene therapy, using native mass spectrometry and glycoproteomics. We found that antibody sialylation and fucosylation depended on the producer tissue and the antibody isotype, allowing us to identify optimal producer cell types according to the desired mode of action of the antibody. Furthermore, we discovered that high amounts (>20%) of non-glycosylated antibodies were produced in cells sensitive to the action of the produced antibodies. Different glycosylation in different producer cells can translate into an altered potency of in-vivo produced antibodies, depending on the desired mode of action, and can affect their serum half-lives. These results increase our knowledge about antibodies produced from cells targeted by gene therapy, enabling development of improved cancer gene therapy vectors that can include in vivo glycoengineering of expressed antibodies to optimize their efficacies, depending on the desired mode of action.


Assuntos
Genes Neoplásicos , Terapia Genética , Vetores Genéticos , Neoplasias , Animais , Células CHO , Cricetulus , Vetores Genéticos/química , Vetores Genéticos/farmacologia , Glicosilação , Humanos , Neoplasias/genética , Neoplasias/terapia , Trastuzumab/química , Trastuzumab/farmacologia
9.
J Immunol ; 200(3): 1088-1100, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288199

RESUMO

Adoptive T cell therapies have achieved significant clinical responses, especially in hematopoietic cancers. Two types of receptor systems have been used to redirect the activity of T cells, normal heterodimeric TCRs or synthetic chimeric Ag receptors (CARs). TCRs recognize peptide-HLA complexes whereas CARs typically use an Ab-derived single-chain fragments variable that recognizes cancer-associated cell-surface Ags. Although both receptors mediate diverse effector functions, a quantitative comparison of the sensitivity and signaling capacity of TCRs and CARs has been limited due to their differences in affinities and ligands. In this study we describe their direct comparison by using TCRs that could be formatted either as conventional αß heterodimers, or as single-chain fragments variable constructs linked to CD3ζ and CD28 signaling domains or to CD3ζ alone. Two high-affinity TCRs (KD values of ∼50 and 250 nM) against MART1/HLA-A2 or WT1/HLA-A2 were used, allowing MART1 or WT1 peptide titrations to easily assess the impact of Ag density. Although CARs were expressed at higher surface levels than TCRs, they were 10-100-fold less sensitive, even in the absence of the CD8 coreceptor. Mathematical modeling demonstrated that lower CAR sensitivity could be attributed to less efficient signaling kinetics. Furthermore, reduced cytokine secretion observed at high Ag density for both TCRs and CARs suggested a role for negative regulators in both systems. Interestingly, at high Ag density, CARs also mediated greater maximal release of some cytokines, such as IL-2 and IL-6. These results have implications for the next-generation design of receptors used in adoptive T cell therapies.


Assuntos
Afinidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno MART-1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas WT1/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Antígenos HLA/imunologia , Humanos , Ativação Linfocitária/imunologia , Proteínas Mutantes Quiméricas/imunologia
10.
Structure ; 24(7): 1142-1154, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27238970

RESUMO

Utilizing a diverse binding site, T cell receptors (TCRs) specifically recognize a composite ligand comprised of a foreign peptide and a major histocompatibility complex protein (MHC). To help understand the determinants of TCR specificity, we studied a parental and engineered receptor whose peptide specificity had been switched via molecular evolution. Altered specificity was associated with a significant change in TCR-binding geometry, but this did not impact the ability of the TCR to signal in an antigen-specific manner. The determinants of binding and specificity were distributed among contact and non-contact residues in germline and hypervariable loops, and included disruption of key TCR-MHC interactions that bias αß TCRs toward particular binding modes. Sequence-fitness landscapes identified additional mutations that further enhanced specificity. Our results demonstrate that TCR specificity arises from the distributed action of numerous sites throughout the interface, with significant implications for engineering therapeutic TCRs with novel and functional recognition properties.


Assuntos
Mutação , Receptores de Antígenos de Linfócitos T/química , Animais , Sítios de Ligação de Anticorpos , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
11.
Methods Mol Biol ; 1319: 95-141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26060072

RESUMO

The αß heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g., a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g., T cell activation by as few as 1-3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with K D values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display.


Assuntos
Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/química , Saccharomyces cerevisiae/genética , Antígenos/metabolismo , Sítios de Ligação , Humanos , Complexo Principal de Histocompatibilidade , Biblioteca de Peptídeos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 5: 5223, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376839

RESUMO

Binding of a T-cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T-cell therapies has required the isolation of specific T-cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro-directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T-cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities.


Assuntos
Regiões Determinantes de Complementaridade/genética , Epitopos/genética , Evolução Molecular , Receptores de Antígenos de Linfócitos T/genética , Sequência de Aminoácidos , Células Clonais , Regiões Determinantes de Complementaridade/química , Epitopos/química , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Técnicas In Vitro , Antígeno MART-1/química , Antígeno MART-1/genética , Complexo Principal de Histocompatibilidade , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oligopeptídeos/química , Oligopeptídeos/genética , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química
13.
J Mol Biol ; 425(22): 4496-507, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954306

RESUMO

One hypothesis accounting for major histocompatibility complex (MHC) restriction by T cell receptors (TCRs) holds that there are several evolutionary conserved residues in TCR variable regions that contact MHC. While this "germline codon" hypothesis is supported by various lines of evidence, it has been difficult to test. The difficulty stems in part from the fact that TCRs exhibit low affinities for pep/MHC, thus limiting the range of binding energies that can be assigned to these key interactions using mutational analyses. To measure the magnitude of binding energies involved, here we used high-affinity TCRs engineered by mutagenesis of CDR3. The TCRs included a high-affinity, MART-1/HLA-A2-specific single-chain TCR and two other high-affinity TCRs that all contain the same Vα region and recognize the same MHC allele (HLA-A2), with different peptides and Vß regions. Mutational analysis of residues in CDR1 and CDR2 of the three Vα2 regions showed the importance of the key germline codon residue Y51. However, two other proposed key residues showed significant differences among the TCRs in their relative contributions to binding. With the use of single-position, yeast-display libraries in two of the key residues, MART-1/HLA-A2 selections also revealed strong preferences for wild-type germline codon residues, but several alternative residues could also accommodate binding and, hence, MHC restriction. Thus, although a single residue (Y51) could account for a proportion of the energy associated with positive selection (i.e., MHC restriction), there is significant plasticity in requirements for particular side chains in CDR1 and CDR2 and in their relative binding contributions among different TCRs.


Assuntos
Regiões Determinantes de Complementaridade/química , Antígeno HLA-A2/química , Peptídeos/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade/metabolismo , Expressão Gênica , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Antígeno MART-1/imunologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Solubilidade
14.
J Biol Chem ; 287(3): 2221-36, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22121197

RESUMO

Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of PAH1 was sufficient to cause marked vacuole fragmentation and abolish vacuole fusion. The function of Pah1p solely depended on its phosphatase activity as complementation studies showed that wild type Pah1p restored fusion, whereas the phosphatase dead mutant Pah1p(D398E) had no effect. We discovered that the lack of PA phosphatase activity blocked fusion by inhibiting the binding of SNAREs to Sec18p, an N-ethylmaleimide-sensitive factor homologue responsible for priming inactive cis-SNARE complexes. In addition, pah1Δ vacuoles were devoid of the late endosome/vacuolar Rab Ypt7p, the phosphatidylinositol 3-kinase Vps34p, and Vps39p, a subunit of the HOPS (homotypic fusion and vacuole protein sorting) tethering complex, all of which are required for vacuole fusion. The lack of Vps34p resulted in the absence of phosphatidylinositol 3-phosphate, a lipid required for SNARE activity and vacuole fusion. These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion.


Assuntos
Homeostase/fisiologia , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Vacúolos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidato Fosfatase/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...