Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Physiol ; 170(3): 1345-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818731

RESUMO

C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf.


Assuntos
Cleome/citologia , Cleome/genética , Arabidopsis/citologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Magnoliopsida/citologia , Magnoliopsida/genética , Células do Mesofilo/metabolismo , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Transdução de Sinais , Especificidade da Espécie , Transcriptoma
3.
PLoS Genet ; 10(6): e1004365, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901697

RESUMO

With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice.


Assuntos
Cleome/genética , Oryza/genética , Fotossíntese/genética , Ativação Transcricional/genética , Zea mays/genética , Substituição de Aminoácidos , Inteligência Artificial , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcriptoma/genética
4.
Plant J ; 78(4): 659-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24617819

RESUMO

Leaves of angiosperms are made up of multiple distinct cell types. While the function of mesophyll cells, guard cells, phloem companion cells and sieve elements are clearly described, this is not the case for the bundle sheath (BS). To provide insight into the role of the BS in the C3 species Arabidopsis thaliana, we labelled ribosomes in this cell type with a FLAG tag. We then used immunocapture to isolate these ribosomes, followed by sequencing of resident mRNAs. This showed that 5% of genes showed specific splice forms in the BS, and that 15% of genes were preferentially expressed in these cells. The BS translatome strongly implies that the BS plays specific roles in sulfur transport and metabolism, glucosinolate biosynthesis and trehalose metabolism. Much of the C4 cycle is differentially expressed between the C3 BS and the rest of the leaf. Furthermore, the global patterns of transcript residency on BS ribosomes overlap to a greater extent with cells of the root pericycle than any other cell type. This analysis provides the first insight into the molecular function of this cell type in C3 species, and also identifies characteristics of BS cells that are probably ancestral to both C3 and C4 plants.


Assuntos
Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Feixe Vascular de Plantas/metabolismo , Ribossomos/metabolismo , Enxofre/metabolismo , Processamento Alternativo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/metabolismo , Redes e Vias Metabólicas/genética , Microscopia Confocal , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Trealose/metabolismo
5.
Plant Physiol ; 165(1): 62-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24676859

RESUMO

Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared these data with publicly available information from maize (Zea mays). This revealed a high correlation (r=0.89) between the relative abundance of transcripts encoding proteins of the core C4 pathway in M and BS cells in these species, indicating significant convergence in transcript accumulation in these evolutionarily independent C4 lineages. We also found that the vast majority of genes encoding proteins of the C4 cycle in S. viridis are syntenic to homologs used by maize. In both lineages, 122 and 212 homologous transcription factors were preferentially expressed in the M and BS, respectively. Sixteen shared regulators of chloroplast biogenesis were identified, 14 of which were syntenic homologs in maize and S. viridis. In sorghum (Sorghum bicolor), a third C4 grass, we found that 82% of these trans-factors were also differentially expressed in either M or BS cells. Taken together, these data provide, to our knowledge, the first quantification of convergence in transcript abundance in the M and BS cells from independent lineages of C4 grasses. Furthermore, the repeated recruitment of syntenic homologs from large gene families strongly implies that parallel evolution of both structural genes and trans-factors underpins the polyphyletic evolution of this highly complex trait in the monocotyledons.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Setaria (Planta)/citologia , Setaria (Planta)/genética , Zea mays/citologia , Zea mays/genética , Sequenciamento de Nucleotídeos em Larga Escala , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Modelos Biológicos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Sorghum/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...