Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 81(9): 4654-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17329340

RESUMO

Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.


Assuntos
Infecções por Adenoviridae/epidemiologia , Adenoviridae/genética , Vetores Genéticos/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética , Infecções por Adenoviridae/sangue , África Subsaariana/epidemiologia , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/imunologia , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Testes de Neutralização , Análise de Sequência de DNA , Estudos Soroepidemiológicos , Sorotipagem
2.
J Gen Virol ; 87(Pt 10): 2891-2899, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963747

RESUMO

Recombinant adenoviral vectors based on type 5 (rAd5) show great promise as a vaccine carrier. However, neutralizing activity against Ad5 is prevalent and high-titred among human populations, and significantly dampens Ad5-based vaccine modalities. The generation of alternative adenoviral vectors with low seroprevalence thus receives much research attention. Here, it is shown that a member from human adenovirus subgroup D, i.e. Ad49, does not cross-react with Ad5 neutralizing activity, making it a candidate serotype for vector development. Therefore, a plasmid system that allows formation of replication-incompetent adenovirus serotype 49 vaccine vectors (rAd49) was constructed and it was demonstrated that rAd49 can be successfully propagated to high titres on existing Ad5.E1-complementing cell lines such as PER.C6. Using an rAd49 vector carrying the luciferase marker gene, detailed seroprevalence studies were performed, demonstrating that rAd49 has low seroprevalence and neutralizing antibody titres worldwide. Also, we have initiated rAd49 vector receptor usage suggesting that rAd49 utilizes hCD46 as a cellular receptor. Finally, the immunogenicity of the rAd49 vector was assessed and it was shown that an rAd49.SIVGag vaccine induces strong anti-SIVGag CD8+ T-lymphocytes in naïve mice, albeit less than an rAd5.SIVGag vaccine. However, in mice with high anti-Ad5 immunity the rAd5.SIVGag vaccine was severely blunted, whereas the anti-SIVGag response was not significantly suppressed using the rAd49.SIVGag vaccine. These data demonstrate the potential of a replication deficient human group D adenoviral vector for vaccination purposes.


Assuntos
Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/imunologia , Replicação Viral , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Animais , Anticorpos Antivirais , Linhagem Celular , Engenharia Genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Proteína Cofatora de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade de Órgãos , Vacinas Sintéticas , Vacinas Virais/imunologia
4.
Biotechnol Prog ; 19(1): 163-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12573020

RESUMO

The number of therapeutic monoclonal antibodies in production is expected to rise rapidly in the next few years. As a result, there is much focus on the optimization of antibody expression platforms. Several issues are important including the speed of transition from bench to manufacturing, yield of IgG, and quality (particularly of the glycan structures present on immunoglobulins). We have characterized the human cell line PER.C6 for its ability to produce recombinant IgG. Production yields are still being optimized, but in nonfed batch culture, PER.C6 is able to grow to a cell density of 5 x 10(6) cells/mL and produce 300-500 mg/L IgG; this is likely to increase significantly in fed batch cultures. The generation of antibody-producing cell lines is fast, as rounds of amplification of inserted genes are not required for high production yields. The gene copy number of inserted genes is in the region of 1-10 copies per genome. In addition, PER.C6 is a human cell line, and so does not add glycans, which are immunogenic in humans. A core fucose molecule is essentially always present, and galactose residues are present at a physiological level (0, 1, and 2 galactose residues per glycan are present at a ratio of 1:2:1). No hybrid or high-mannose structures are seen.


Assuntos
Regulação da Expressão Gênica/genética , Imunoglobulina G/biossíntese , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Retina/metabolismo , Reatores Biológicos , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Clonagem Molecular/métodos , Humanos , Imunoglobulina G/genética , Polissacarídeos/metabolismo , Controle de Qualidade , Proteínas Recombinantes/genética , Retina/citologia , Retina/embriologia , Retina/fisiologia , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...