Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 251: 112850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277961

RESUMO

The effect of UV radiation from three different sources on chitosan (CS) films containing the addition of 10% by weight of cannabis oil was investigated. Cannabis oil (CBD) alone exposed to UV is unstable, but its photostability significantly increases in the chitosan matrix. The course of photochemical reactions, studied by FTIR spectroscopy, is slow and inefficient in chitosan with CBD, even under high-energy UV sources. The research also included chitosan films with CBD cross-linked with dialdehyde starch (DAS). Using AFM microscopy and contact angle measurements, the morphology and surface properties of prepared chitosan films with CBD were investigated, respectively. It was found that CBD embedded in CS is characterized by the best photostability under the influence of an LED emitting long-wave radiation. Using a monochromatic and polychromatic UV lamp (HPK and UV-C) emitting high-energy radiation, gradual degradation accompanied by oxidation was observed, both in the CS chains and in the CBD additive. Additionally, changes in surface properties are observed during UV irradiation. It was concluded that CS protects CBD against photodegradation, and a further improvement in photochemical stability is achieved after system cross-linking with DAS.


Assuntos
Cannabis , Quitosana , Quitosana/química , Raios Ultravioleta , Propriedades de Superfície , Microscopia Eletrônica de Varredura
2.
Int J Biol Macromol ; 253(Pt 3): 126933, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722631

RESUMO

Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.


Assuntos
Quitosana , Camundongos , Animais , Humanos , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Fibrinogênio , Anti-Inflamatórios
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675294

RESUMO

The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure.


Assuntos
Quitosana , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Boro/química
4.
Sci Rep ; 12(1): 18658, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333591

RESUMO

This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.


Assuntos
Cannabis , Quitosana , Humanos , Bandagens/microbiologia , Cicatrização , Materiais Biocompatíveis/farmacologia
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269605

RESUMO

Levan, as a biocompatible and renewable biopolymer with anticancer properties, is a promising candidate for a wide range of applications in various fields of industry. However, in the literature, there is a lack of information about its behavior under the influence of UV irradiation, which may limit its potential application, including medical science. Therefore, this study describes the effects of irradiation on the structural properties of levan. This type of fructan was subjected to stability tests under radiation conditions using LED and polychromatic lamps. The results showed that the photodegradation of levan irradiated with a polychromatic light occurs faster and more efficiently than the photodegradation of levan irradiated with an LED lamp. Furthermore, AFM analysis showed that the surface became smoother after irradiation, as evidenced by decreasing values of roughness parameters. Moreover, UV irradiation causes the decrease of total surface free energy and both its components in levan; however, more significant changes occur during irradiation of the sample with a polychromatic lamp.


Assuntos
Frutanos , Biopolímeros/química , Frutanos/química
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201648

RESUMO

The present study is devoted to the combined experimental and theoretical description of the photophysical properties and photodegradation of the new boron-dipyrromethene (BODIPY) derivatives obtained recently for biomedical applications, such as bacteria photoinactivation (Piskorz et al., Dyes and Pigments 2020, 178, 108322). Absorption and emission spectra for a wide group of solvents of different properties for the analyzed BODIPY derivatives were investigated in order to verify their suitability for photopharmacological applications. Additionally, the photostability of the analyzed systems were thoroughly determined. The exposition to the UV light was found first to cause the decrease in the most intensive absorption band and the appearance of the hypsochromically shifted band of similar intensity. On the basis of the chromatographic and computational study, this effect was assigned to the detachment of the iodine atoms from the BODIPY core. After longer exposition to UV light, photodegradation occurred, leading to the disappearance of the intensive absorption bands and the emergence of small intensity signals in the strongly blue-shifted range of the spectrum. Since the most intensive bands in original dyes are ascribed to the molecular core bearing the BF2 moiety, this result can be attributed to the significant cleavage of the BF2 ring. In order to fully characterize the obtained molecules, the comprehensive computational chemistry study was performed. The influence of the intermolecular interactions for their absorption in solution was analyzed. The theoretical data entirely support the experimental outcomes.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Teoria da Densidade Funcional , Iodo/química , Conformação Molecular , Fotólise , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
7.
Materials (Basel) ; 14(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801523

RESUMO

Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.

8.
Materials (Basel) ; 13(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640535

RESUMO

The N-doped hybrid carbon materials containing amorphous carbon nanotubes (ACNTs) were obtained by free growth of a polymer at 200 °C. The improvement of electrical conductivity was achieved by a final carbonization at 600-800 °C under the flow of nitrogen. The microstructure of ACNT/N-doped hybrids was characterized using a transmission electron microscope and X-ray diffusion. Furthermore, their elemental composition was measured using energy-dispersive X-ray spectroscopy and an elemental analyzer. The experimental results indicated that the ACNTs had a diameter in the range of 40-60 nm and the N-doped carbon background contained nitrogen atoms in most bonded pyrrolic-N and quaternary-N groups. The results revealed that the microstructure of the as-grown nanotubes, prepared by the proposed method, is mainly amorphous. This technique introduces the advantages of low cost and process simplicity, which may redeem some drawbacks of the methods commonly used in ACNT synthesis.

9.
Appl Surf Sci ; 524: 146602, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32382204

RESUMO

Phototherapies, including photodynamic therapy (PDT), have been widely used in the treatment of various diseases, especially for cancer. However, there is still a lack of effective, safe photosensitizers that would be well tolerated by patients. The combination of several methods (like phototherapy and hyperthermia) constitutes a modern therapeutic approach, which demands new materials based on components that are non-toxic without irradiation. Therefore, this study presents the synthesis and properties of novel, advanced nanomaterials in which the advantage features of the magnetic nanoparticles and photoactive compounds were combined. The primary purpose of this work was the synthesis of magnetic nanoparticles coated with biocompatible and antitumor polysaccharide - levan, previously unknown from scientific literature, and the deposition of potent photosensitizer - zinc(II) phthalocyanine on their surface. In order to better characterize the nature of the coating covering the magnetic core, the atomic force microscope analysis, a contact angle measurement, and the mechanical properties of pure levan and its blend with zinc(II) phthalocyanine films were investigated. This magnetic nanomaterial revealed the ability to generate singlet oxygen upon exposure to light. Finally, preliminary toxicity of obtained nanoparticles was tested using the Microtox® test - with and without irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...