Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(32): 11262-11274, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554805

RESUMO

The transport activity of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) in cardiac myocytes is modulated by an inhibitory interaction with a transmembrane peptide, phospholamban (PLB). Previous biochemical studies have revealed that PLB interacts with a specific inhibitory site on SERCA, and low-resolution structural evidence suggests that PLB interacts with distinct alternative sites on SERCA. High-resolution details of the structural determinants of SERCA regulation have been elusive because of the dynamic nature of the regulatory complex. In this study, we used computational approaches to develop a structural model of SERCA-PLB interactions to gain a mechanistic understanding of PLB-mediated SERCA transport regulation. We combined steered molecular dynamics and membrane protein-protein docking experiments to achieve both a global search and all-atom force calculations to determine the relative affinities of PLB for candidate sites on SERCA. We modeled the binding of PLB to several SERCA conformations, representing different enzymatic states sampled during the calcium transport catalytic cycle. The results of the steered molecular dynamics and docking experiments indicated that the canonical PLB-binding site (comprising transmembrane helices M2, M4, and M9) is the preferred site. This preference was even more stringent for a superinhibitory PLB variant. Interestingly, PLB-binding specificity became more ambivalent for other SERCA conformers. These results provide evidence for polymorphic PLB interactions with novel sites on M3 and with the outside of the SERCA helix M9. Our findings are compatible with previous physical measurements that suggest that PLB interacts with multiple binding sites, conferring dynamic responsiveness to changing physiological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular
2.
Phys Chem Chem Phys ; 21(35): 19469-19479, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31461098

RESUMO

Using all-atom molecular dynamics simulations of aqueous solutions of the globular protein SNase, the dynamic behavior of water molecules and cosolvents (trimethylamine-N-oxide (TMAO) and urea) in the hydration shell of the protein was studied for different solvent compositions. TMAO is a potent protein-stabilizing osmolyte, whereas urea is known to destabilize proteins. For molecules that are initially located in successive narrow layers at a given distance from the protein, the mean displacements and the distribution of displacements for short time intervals are calculated. For molecules that are initially located in solvation shells of a given thickness around the protein, the characteristic residence times in these shells are determined to characterize the dynamic behavior of the solvent molecules as a function of the distance to the protein. A combined consideration of these characteristics allows to reveal additional features of the dynamics of the cosolvents. It is shown that TMAO molecules leave the nearest vicinity of the protein faster than urea molecules, despite the fact that the mobility of TMAO molecules, measured by their mean displacements, is lower than that of urea. Moreover, we show that the rate of release of TMAO molecules from the hydration shell is lower in ternary (TMAO + urea + H2O) solvent mixtures than in the binary ones. This is consistent with a recent observation that the fraction of TMAO near the protein decreases in the presence of urea. From the analysis of the decay of the number of particles initially located in the region of the first peak of the distribution function of solvent molecules around the protein, we estimated that about 20 water molecules and 6-7 urea molecules stay near the protein for more than 1000 ps.


Assuntos
Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Metilaminas/química , Simulação de Dinâmica Molecular , Ureia/química , Água/química , Estabilidade Proteica , Solventes/química
3.
PLoS One ; 14(3): e0212888, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889178

RESUMO

TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.


Assuntos
Proteínas de Transporte/genética , Infecções por HIV/genética , HIV-1/imunologia , Animais , Fatores de Restrição Antivirais , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Gatos , Predisposição Genética para Doença , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Conformação Proteica em alfa-Hélice/genética , Domínios Proteicos/genética , Estrutura Quaternária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
4.
J Biol Chem ; 293(28): 10843-10856, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29764938

RESUMO

The conformational changes of a calcium transport ATPase were investigated with molecular dynamics (MD) simulations as well as fluorescence resonance energy transfer (FRET) measurements to determine the significance of a discrete structural element for regulation of the conformational dynamics of the transport cycle. Previous MD simulations indicated that a loop in the cytosolic domain of the SERCA calcium transporter facilitates an open-to-closed structural transition. To investigate the significance of this structural element, we performed additional MD simulations and new biophysical measurements of SERCA structure and function. Rationally designed in silico mutations of three acidic residues of the loop decreased SERCA domain-domain contacts and increased domain-domain separation distances. Principal component analysis of MD simulations suggested decreased sampling of compact conformations upon N-loop mutagenesis. Deficits in headpiece structural dynamics were also detected by measuring intramolecular FRET of a Cer-YFP-SERCA construct (2-color SERCA). Compared with WT, the mutated 2-color SERCA shows a partial FRET response to calcium, whereas retaining full responsiveness to the inhibitor thapsigargin. Functional measurements showed that the mutated transporter still hydrolyzes ATP and transports calcium, but that maximal enzyme activity is reduced while maintaining similar calcium affinity. In live cells, calcium elevations resulted in concomitant FRET changes as the population of WT 2-color SERCA molecules redistributed among intermediates of the transport cycle. Our results provide novel insights on how the population of SERCA pumps responds to dynamic changes in intracellular calcium.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , RNA Interferente Pequeno/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
RSC Adv ; 8(5): 2315-2322, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35541455

RESUMO

PEGylation is a widely adopted process to covalently attach a polyethylene glycol (PEG) polymer to a protein drug for the purpose of optimizing drug clinical performance. While the outcomes of PEGylation in imparting pharmacological advantages have been examined through experimental studies, the underlying molecular mechanisms remain poorly understood. Using interferon (IFN) as a representative model system, we carried out comparative molecular dynamics (MD) simulations of free PEGx, apo-IFN, and PEGx-IFN (x = 50, 100, 200, 300) to characterize the molecular-level changes in IFN introduced by PEGylation. The simulations yielded molecular evidence directly linked to the improved protein stability, bioavailability, retention time, as well as the decrease in protein bioactivity with PEG conjugates. Our results indicate that there is a tradeoff between the benefits and costs of PEGylation. The optimal PEG chain length used in PEGylation needs to strike a good balance among the competing factors and maximizes the overall therapeutic efficacy of the protein drug. We anticipate the study will have a broad implication for protein drug design and development, and provide a unique computational approach in the context of optimizing PEGylated protein drug conjugates.

6.
Phys Chem Chem Phys ; 19(9): 6345-6357, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116386

RESUMO

We performed all-atom MD simulations of the protein SNase in aqueous solution and in the presence of two major osmolytes, trimethylamine-N-oxide (TMAO) and urea, as cosolvents at various concentrations and compositions and at different pressures and temperatures. The distributions of the cosolvent molecules and their orientation in the surroundings of the protein were analyzed in great detail. The distribution of urea is largely conserved near the protein. It varies little with pressure and temperature, and does practically not depend on the addition of TMAO. The slight decrease with temperature of the number of urea molecules that are in contact with the SNase molecule is consistent with the view that the interaction of the protein with urea is mainly of enthalpic nature. Most of the TMAO molecules tend to be oriented to the protein by its methyl groups, a small amount of these molecules contact the protein by its oxygen, forming hydrogen bonds with the protein, only. Unlike urea, the fraction of TMAO in the hydration shell of SNase slightly increases with temperature (a signature of a prevailing hydrophobic interaction between TMAO and SNase), and decreases significantly upon the addition of urea. This behavior reflects the diverse nature of the interaction of the two osmolytes with the protein. Using the Voronoi volume of the atoms of the solvent molecules (water, urea, TMAO), we compared the fraction of the volume occupied by a given type of solvent molecule in the hydration shell and in the bulk solvent. The volume fraction of urea in the hydration shell is more than two times larger than in the bulk, whereas the volume fraction of TMAO in the hydration shell is only slightly larger in the binary solvent (TMAO + water) and becomes even less than in the bulk in the ternary solvent (TMAO + water + urea). Thus, TMAO tends to be excluded from the hydration shell of the protein. The behavior of the two cosolvents in the vicinity of the protein does not change much with pressure (from 1 to 5000 bar) and temperature (from 280 to 330 K). This is also in line with the conception of the "osmophobic effect" of TMAO to protect proteins from denaturation also at harsh environmental conditions. We also calculated the volumetric parameters of SNase and found that the cosolvents have a small but significant effect on the apparent volume and its contributions, i.e. the intrinsic, molecular and thermal volumes.


Assuntos
Metilaminas/química , Nuclease do Micrococo/química , Ureia/química , Água/química , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Solventes/química , Temperatura
7.
Virology ; 500: 161-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821283

RESUMO

The TRIM5α protein from rhesus macaques (rhTRIM5α) mediates a potent inhibition of HIV-1 infection via a mechanism that involves the abortive disassembly of the viral core. We have demonstrated that alpha-helical elements within the Linker 2 (L2) region, which lies between the SPRY domain and the Coiled-Coil domain, influence the potency of restriction. Here, we utilize single-molecule FRET analysis to reveal that the L2 region of the TRIM5α dimer undergoes dynamic conformational changes, which results in the displacement of L2 regions by 25 angstroms relative to each other. Analysis of restriction enhancing or abrogating mutations in the L2 region reveal that restriction defective mutants are unable to undergo dynamic conformational changes and do not assume compact, alpha-helical conformations in the L2 region. These data suggest a model in which conformational changes in the L2 region mediate displacement of CA bound SPRY domains to induce the destabilization of assembled capsid during restriction.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Macaca mulatta/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Dimerização , Modelos Animais de Doenças , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Macaca mulatta/genética , Macaca mulatta/virologia , Mutação , Conformação Proteica
8.
Biochemistry ; 55(44): 6196-6204, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27718550

RESUMO

To determine if mutations introduced into phospholemman (PLM) could increase the level of PLM-Na,K-ATPase (NKA) binding, we performed scanning mutagenesis of the transmembrane domain of PLM and measured Förster resonance energy transfer (FRET) between each mutant and NKA. We observed an increased level of binding to NKA for several PLM mutants compared to that of the wild type (WT), including L27A, L30A, and I32A. In isolated cardiomyocytes, overexpression of WT PLM increased the amplitude of the Ca2+ transient compared to the GFP control. The Ca2+ transient amplitude was further increased by L30A PLM overexpression. The L30A mutation also delayed Ca2+ extrusion and increased the duration of cardiomyocyte contraction. This mimics aspects of the effect of cardiac glycosides, which are known to increase contractility through inhibition of NKA. No significant differences between WT and L30A PLM-expressing myocytes were observed after treatment with isoproterenol, suggesting that the superinhibitory effects of L30A are reversible with ß-adrenergic stimulation. We also observed a decrease in the extent of PLM tetramerization with L30A compared to WT using FRET, suggesting that L30 is an important residue for mediating PLM-PLM binding. Molecular dynamics simulations revealed that the potential energy of the L30A tetramer is greater than that of the WT, and that the transmembrane α helix is distorted by the mutation. The results identify PLM residue L30 as an important determinant of PLM tetramerization and of functional inhibition of NKA by PLM.


Assuntos
Glicosídeos Cardíacos/farmacologia , Proteínas de Membrana/genética , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Fosfoproteínas/genética , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Coelhos
9.
J Biol Chem ; 291(41): 21817-21828, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27557662

RESUMO

The cardiac troponin I (cTnI) R145W mutation is associated with restrictive cardiomyopathy (RCM). Recent evidence suggests that this mutation induces perturbed myofilament length-dependent activation (LDA) under conditions of maximal protein kinase A (PKA) stimulation. Some cardiac disease-causing mutations, however, have been associated with a blunted response to PKA-mediated phosphorylation; whether this includes LDA is unknown. Endogenous troponin was exchanged in isolated skinned human myocardium for recombinant troponin containing either cTnI R145W, PKA/PKC phosphomimetic charge mutations (S23D/S24D and T143E), or various combinations thereof. Myofilament Ca2+ sensitivity of force, tension cost, LDA, and single myofibril activation/relaxation parameters were measured. Our results show that both R145W and T143E uncouple the impact of S23D/S24D phosphomimetic on myofilament function, including LDA. Molecular dynamics simulations revealed a marked reduction in interactions between helix C of cTnC (residues 56, 59, and 63), and cTnI (residue 145) in the presence of either cTnI RCM mutation or cTnI PKC phosphomimetic. These results suggest that the RCM-associated cTnI R145W mutation induces a permanent structural state that is similar to, but more extensive than, that induced by PKC-mediated phosphorylation of cTnI Thr-143. We suggest that this structural conformational change induces an increase in myofilament Ca2+ sensitivity and, moreover, uncoupling from the impact of phosphorylation of cTnI mediated by PKA at the Ser-23/Ser-24 target sites. The R145W RCM mutation by itself, however, does not impact LDA. These perturbed biophysical and biochemical myofilament properties are likely to significantly contribute to the diastolic cardiac pump dysfunction that is seen in patients suffering from a restrictive cardiomyopathy that is associated with the cTnI R145W mutation.


Assuntos
Cardiomiopatia Restritiva , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Sarcômeros , Troponina I , Substituição de Aminoácidos , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/metabolismo , Relação Estrutura-Atividade , Troponina I/química , Troponina I/genética , Troponina I/metabolismo
10.
Phys Chem Chem Phys ; 17(13): 8499-508, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25685984

RESUMO

Understanding the physical basis of the structure, stability and function of proteins in solution, including extreme environmental conditions, requires knowledge of their temperature and pressure dependent volumetric properties. One physical-chemical property of proteins that is still little understood is their partial molar volume and its dependence on temperature and pressure. We used molecular dynamics simulations of aqueous solutions of a typical monomeric folded protein, staphylococcal nuclease (SNase), to study and analyze the pressure dependence of the apparent volume, Vapp, and its components by the Voronoi-Delaunay method. We show that the strong decrease of Vapp with pressure (ßT = 0.95 × 10(-5) bar(-1), in very good agreement with the experimental value) is essentially due to the compression of the molecular volume, VM, ultimately, of its internal voids, V. Changes of the intrinsic volume (defined as the Voronoi volume of the molecule), the contribution of the solvent to the apparent volume, and of the contribution of the boundary voids between the protein and the solvent have also been studied and quantified in detail. The pressure dependences of the volumetric characteristics obtained are compared with the temperature dependent behavior of these quantities and with corresponding results for a natively unfolded polypeptide.


Assuntos
Nuclease do Micrococo/química , Água/química , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Pressão , Dobramento de Proteína , Temperatura
11.
J Phys Chem B ; 119(5): 1881-90, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25590869

RESUMO

We used molecular dynamics simulations of a typical monomeric protein, SNase, in combination with Voronoi-Delaunay tessellation to study and analyze the temperature dependence of the apparent volume, Vapp, of the solute. We show that the void volume, VB, created in the boundary region between solute and solvent, determines the temperature dependence of Vapp to a major extent. The less pronounced but still significant temperature dependence of the molecular volume of the solute, VM, is essentially the result of the expansivity of its internal voids, as the van der Waals contribution to VM is practically independent of temperature. Results for polypeptides of different chemical nature feature a similar temperature behavior, suggesting that the boundary/hydration contribution seems to be a universal part of the temperature dependence of Vapp. The results presented here shine new light on the discussion surrounding the physical basis for understanding and decomposing the volumetric properties of proteins and biomolecules in general.


Assuntos
Nuclease do Micrococo/química , Água/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Calorimetria , Humanos , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Eletricidade Estática , Temperatura
12.
J Phys Chem B ; 119(4): 1407-15, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25531267

RESUMO

To characterize the conformational dynamics of sarcoplasmic reticulum (SR) calcium pump (SERCA) we performed molecular dynamics simulations beginning with several different high-resolution structures. We quantified differences in structural disorder and dynamics for an open conformation of SERCA versus closed structures and observed that dynamic motions of SERCA cytoplasmic domains decreased with decreasing domain-domain separation distance. The results are useful for interpretation of recent intramolecular Förster resonance energy transfer (FRET) distance measurements obtained for SERCA fused to fluorescent protein tags. Those previous physical measurements revealed several discrete structural substates and suggested open conformations of SERCA are more dynamic than compact conformations. The present simulations support this hypothesis and provide additional details of SERCA molecular mechanisms. Specifically, all-atoms simulations revealed large-scale translational and rotational motions of the SERCA N-domain relative to the A- and P-domains during the transition from an open to a closed headpiece conformation over the course of a 400 ns trajectory. The open-to-closed structural transition was accompanied by a disorder-to-order transition mediated by an initial interaction of an N-domain loop (Nß5-ß6, residues 426-436) with residues 133-139 of the A-domain. Mutation of three negatively charged N-domain loop residues abolished the disorder-to-order transition and prevented the initial domain-domain interaction and subsequent closure of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations were in harmony with all-atoms simulations and physical measurements and revealed a close communication between fluorescent protein tags and the domain to which they were fused. The data indicate that previous intramolecular FRET distance measurements report SERCA structure changes with high fidelity and suggest a structural mechanism that facilitates the closure of the SERCA cytoplasmic headpiece.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Alinhamento de Sequência
13.
J Biol Chem ; 289(37): 25855-66, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074938

RESUMO

To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val(49)-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Fenômenos Biofísicos , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Insuficiência Cardíaca/patologia , Humanos , Complexos Multiproteicos , Ligação Proteica , Estrutura Quaternária de Proteína/genética , Proteínas Recombinantes de Fusão/genética , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
14.
J Virol ; 88(16): 8911-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872590

RESUMO

UNLABELLED: TRIM5α proteins are a potent barrier to the cross-species transmission of retroviruses. TRIM5α proteins exhibit an ability to self-associate at many levels, ultimately leading to the formation of protein assemblies with hexagonal symmetry in vitro and cytoplasmic assemblies when expressed in cells. However, the role of these assemblies in restriction, the determinants that mediate their formation, and the organization of TRIM5α molecules within these assemblies have remained unclear. Here we show that α-helical elements within the Linker2 region of rhesus macaque TRIM5α govern the ability to form cytoplasmic assemblies in cells and restrict HIV-1 infection. Mutations that reduce α-helix formation by the Linker2 region disrupt assembly and restriction. More importantly, mutations that enhance the α-helical content of the Linker2 region, relative to the wild-type protein, also exhibit an increased ability to form cytoplasmic assemblies and restrict HIV-1 infection. Molecular modeling of the TRIM5α dimer suggests a model in which α-helical elements within the Linker2 region dock to α-helices of the coiled-coil domain, likely establishing proper orientation and spacing of protein domains necessary for assembly and restriction. Collectively, these studies provide critical insight into the determinants governing TRIM5α assembly and restriction and demonstrate that the antiviral potency of TRIM5α proteins can be significantly increased without altering the affinity of SPRY/capsid binding. IMPORTANCE: Many members of the tripartite motif (TRIM) family of proteins act as restriction factors that directly inhibit viral infection and activate innate immune signaling pathways. Another common feature of TRIM proteins is the ability to form protein assemblies in the nucleus or the cytoplasm. However, the determinants in TRIM proteins required for assembly and the degree to which assembly affects TRIM protein function have been poorly understood. Here we show that alpha helices in the Linker2 (L2) region of rhesus TRIM5α govern assembly and restriction of HIV-1 infection. Helix-disrupting mutations disrupt the assembly and restriction of HIV-1, while helix-stabilizing mutations enhance assembly and restriction relative to the wild-type protein. Circular dichroism analysis suggests that that the formation of this helical structure is supported by intermolecular interactions with the coiled-coil (CC) domain in the CCL2 dimer. These studies reveal a novel mechanism by which the antiviral activity of TRIM5α proteins can be regulated and provide detailed insight into the assembly determinants of TRIM family proteins.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , HIV-1/genética , HIV-1/metabolismo , Estrutura Secundária de Proteína/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Macaca mulatta/genética , Macaca mulatta/microbiologia , Macaca mulatta/virologia , Mutação/genética
15.
Phys Rev Lett ; 112(15): 158102, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785076

RESUMO

The relative motion of structural domains is essential for the biological function of many proteins. Here, by analyzing neutron scattering data and performing molecular dynamics simulations, we find that interdomain motion in several proteins obeys the principle of de Gennes narrowing, in which the wave vector dependence of the interdomain diffusion coefficient is inversely proportional to the interdomain structure factor. Thus, the rate of interdomain motion is inversely proportional to the probability distribution of the spatial configurations of domains.


Assuntos
Modelos Químicos , Proteínas/química , Simulação de Dinâmica Molecular , Difração de Nêutrons/métodos , Fosfoglicerato Quinase/química , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
16.
Phys Rev Lett ; 107(14): 148102, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107237

RESUMO

A simplified description of the 295 K dynamics of a globular protein over a wide frequency range (1-1000 GHz) is obtained by combining neutron scattering of lysozyme with molecular dynamics simulation. The molecular dynamics simulation agrees quantitatively with experiment for both the protein and the hydration water and shows that, whereas the hydration water molecules subdiffuse, the protein atoms undergo confined motion decomposable into three distinct classes: localized diffusion, methyl group rotations, and jumps. Each of the three classes gives rise to a characteristic neutron susceptibility signal.


Assuntos
Movimento , Muramidase/química , Muramidase/metabolismo , Difração de Nêutrons , Simulação de Dinâmica Molecular , Água/química
17.
Proc Natl Acad Sci U S A ; 108(33): 13752-7, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825121

RESUMO

Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.


Assuntos
Álcool Desidrogenase/genética , Clostridium thermocellum/genética , Tolerância a Medicamentos/genética , Etanol/metabolismo , Mutação , Aldeído Oxirredutases , Clostridium thermocellum/enzimologia , Clostridium thermocellum/fisiologia , NAD , NADP
18.
Biophys J ; 95(3): 1089-98, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18441032

RESUMO

Molecular dynamics simulations of aquaporin-1 embedded in a solvated lipid bilayer were carried out to investigate the mechanism of water permeation. The 2.2 A resolution crystal structure of the bovine protein was used for five independent trajectories. During the equilibration and preparatory steps in which the protein was held fixed, water molecules inside the water channel adopted the same positions as observed in the crystal structure but they did not pass through the channel, suggesting that the dynamic motion of the protein is critical for water permeation. When the protein atoms were allowed to move, the side chains of the two asparagines in the two conserved Asn-Pro-Ala motifs near the center of the channel formed hydrogen bonds with water and helped water molecules move through the channel by actively aligning them for transport. The main-chain oxygen atoms, which were exposed to the pore surface in the crystal structure, also contributed to water transfer. Besides the constriction region observed in the crystal structure (Arg(197), Phe(58), His(182), and Cys(191)), we found that His(76) and Val(155) act as a valve by dynamically blocking water permeation and helping control flow.


Assuntos
Aquaporina 1/química , Aquaporina 1/ultraestrutura , Bicamadas Lipídicas/química , Modelos Químicos , Modelos Moleculares , Água/química , Simulação por Computador , Difusão , Permeabilidade , Porosidade , Estrutura Terciária de Proteína
19.
J Phys Chem B ; 112(19): 6193-202, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18336017

RESUMO

Antifreeze proteins (AFPs) are found in different species from polar, alpine, and subarctic regions where they serve to inhibit ice crystal growth by adsorption to ice surfaces. Computational methods have the power to investigate the antifreeze mechanism in atomic detail. Molecular dynamics simulations of water under different conditions have been carried out to test our water model for simulations of biological macromolecules in extreme conditions: very low temperatures (200 K) and at the ice/liquid water interface. We show that the flexible F3C water model reproduces properties of water in the solid phase (ice I(h)), the supercooled liquid phase, and at the ice/liquid water interface. Additionally, the hydration of the type III AFP from ocean pout was studied as a function of temperature. Hydration waters on the ice-binding surface of the AFP were less distorted and more tetrahedral than elsewhere on the surface. More ice-like hydrating water structures formed on the ice-binding surface of the protein such that it created an ice-like structure in water within its first hydration layer but not beyond, suggesting that this portion of the protein has high affinity for ice surfaces.


Assuntos
Proteínas Anticongelantes/química , Gelo , Simulação por Computador , Difusão , Probabilidade , Espécies Reativas de Oxigênio/química , Propriedades de Superfície , Temperatura , Termodinâmica
20.
J Phys Chem B ; 112(3): 997-1006, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18171045

RESUMO

It is now generally agreed that the hydration water and solvational properties play a crucial role in determining the dynamics and hence the functionality of proteins. We present molecular dynamics computer simulation studies on staphylococcal nuclease (SNase) at various temperatures and pressures as well as in different cosolvent solutions containing various concentrations of urea and glycerol. The aim is to provide a molecular level understanding of how different types of cosolvents (chaotropic and kosmotropic) as well as temperature and high hydrostatic pressure modify the structure and dynamics of the hydration water. Taken together, these three intrinsic thermodynamic variables, temperature, pressure, and chemical potential (or activity) of the solvent, are able to influence the stability and function of the protein by protein-solvent dynamic coupling in different ways. A detailed analysis of the structural and dynamical properties of the water and cosolvents at the protein surface (density profile, coordination numbers, hydrogen-bond distribution, average H-bond lifetimes (water-protein and water-water), and average residence time of water in the hydration shell) was carried out, and differences in the structural and dynamical properties of the hydration water in the presence of the different cosolvents and at temperatures between 300 and 400 K and pressures up to 5000 bar are discussed. Furthermore, the results obtained help understand various thermodynamic properties measured for the protein.


Assuntos
Simulação por Computador , Nuclease do Micrococo/química , Água/química , Glicerol/química , Ligação de Hidrogênio , Modelos Moleculares , Pressão , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Soluções/química , Solventes/química , Temperatura , Fatores de Tempo , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...