Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(9): 3214-3235, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202374

RESUMO

Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.


Assuntos
Condensados Biomoleculares , Corpos Enovelados , Animais , Corpos Enovelados/genética , Corpos Enovelados/metabolismo , Núcleo Celular/metabolismo , RNA , Splicing de RNA
2.
Plant Cell ; 34(12): 4920-4935, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36087009

RESUMO

In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Microcomputadores , Cromatina/genética , Cromatina/metabolismo , Processamento Pós-Transcricional do RNA/genética
3.
Nat Plants ; 8(4): 402-418, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35449404

RESUMO

In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Estruturas R-Loop , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA
4.
Plant Cell ; 34(6): 2404-2423, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294035

RESUMO

Gene regulation ensures that the appropriate genes are expressed at the proper time. Nuclear retention of incompletely spliced or mature mRNAs is emerging as a novel, previously underappreciated layer of posttranscriptional regulation. Studies on this phenomenon indicated that it exerts a significant influence on the regulation of gene expression by regulating export and translation delay, which allows the synthesis of specific proteins in response to a stimulus or at strictly controlled time points, for example, during cell differentiation or development. Here, we show that transcription in microsporocytes of European larch (Larix decidua) occurs in a pulsatile manner during prophase of the first meiotic division. Transcriptional activity was then silenced after each pulse. However, the transcripts synthesized were not exported immediately to the cytoplasm but were retained in the nucleoplasm and Cajal bodies (CBs). In contrast to the nucleoplasm, we did not detect mature transcripts in CBs, which only stored nonfully spliced transcripts with retained introns. Notably, the retained introns were spliced at precisely defined times, and fully mature mRNAs were released into the cytoplasm for translation. As similar processes have been observed during spermatogenesis in animals, our results illustrate an evolutionarily conserved mechanism of gene expression regulation during generative cells development in Eukaryota.


Assuntos
Larix , Animais , Corpos Enovelados/genética , Corpos Enovelados/metabolismo , Larix/genética , Larix/metabolismo , Meiose , Prófase , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445207

RESUMO

Recent studies show a crucial role of post-transcriptional processes in the regulation of gene expression. Our research has shown that mRNA retention in the nucleus plays a significant role in such regulation. We studied larch microsporocytes during meiotic prophase, characterized by pulsatile transcriptional activity. After each pulse, the transcriptional activity is silenced, but the transcripts synthesized at this time are not exported immediately to the cytoplasm but are retained in the cell nucleus and especially in Cajal bodies, where non-fully-spliced transcripts with retained introns are accumulated. Analysis of the transcriptome of these cells and detailed analysis of the nuclear retention and transport dynamics of several mRNAs revealed two main patterns of nuclear accumulation and transport. The majority of studied transcripts followed the first one, consisting of a more extended retention period and slow release to the cytoplasm. We have shown this in detail for the pre-mRNA and mRNA encoding RNA pol II subunit 10. In this pre-mRNA, a second (retained) intron is posttranscriptionally spliced at a precisely defined time. Fully mature mRNA is then released into the cytoplasm, where the RNA pol II complexes are produced. These proteins are necessary for transcription in the next pulse to occur.mRNAs encoding translation factors and SERRATE followed the second pattern, in which the retention period was shorter and transcripts were rapidly transferred to the cytoplasm. The presence of such a mechanism in various cell types from a diverse range of organisms suggests that it is an evolutionarily conserved mechanism of gene regulation.


Assuntos
Núcleo Celular/metabolismo , Larix/metabolismo , Pólen/metabolismo , Prófase , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Núcleo Celular/genética , Larix/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
6.
Proc Natl Acad Sci U S A ; 117(35): 21785-21795, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817553

RESUMO

In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem-loop regions of these transcripts in mta mutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m6A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA in mta mutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes of mta mutant plants.


Assuntos
Metiltransferases/metabolismo , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metilação , Metiltransferases/fisiologia , MicroRNAs/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
Plant J ; 103(3): 1155-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369637

RESUMO

In recent years, research has increasingly focused on the key role of post-transcriptional regulation of messenger ribonucleoprotein (mRNP) function and turnover. As a result of the complexity and dynamic nature of mRNPs, the full composition of a single mRNP complex remains unrevealed and mRNPs are poorly described in plants. Here we identify canonical Sm proteins as part of the cytoplasmic mRNP complex, indicating their function in the post-transcriptional regulation of gene expression in plants. Sm proteins comprise an evolutionarily ancient family of small RNA-binding proteins involved in pre-mRNA splicing. The latest research indicates that Sm could also impact on mRNA at subsequent stages of its life cycle. In this work we show that in the microsporocyte cytoplasm of Larix decidua, the European larch, Sm proteins accumulate within distinct cytoplasmic bodies, also containing polyadenylated RNA. To date, several types of cytoplasmic bodies involved in the post-transcriptional regulation of gene expression have been described, mainly in animal cells. Their role and molecular composition in plants remain less well established, however. A total of 222 mRNA transcripts have been identified as cytoplasmic partners for Sm proteins. The specific colocalization of these mRNAs with Sm proteins within cytoplasmic bodies has been confirmed via microscopic analysis. The results from this work support the hypothesis, that evolutionarily conserved Sm proteins have been adapted to perform a whole repertoire of functions related to the post-transcriptional regulation of gene expression in Eukaryota. This adaptation presumably enabled them to coordinate the interdependent processes of splicing element assembly, mRNA maturation and processing, and mRNA translation regulation, and its degradation.


Assuntos
Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Larix/metabolismo , RNA Mensageiro/metabolismo
8.
J Neurosci Res ; 97(10): 1266-1277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31257630

RESUMO

Anoxia during delivery is a complication that can disturb infant brain development leading to various types of neurological disorders. Our studies have shown that increased body temperature of newborn rats of both sexes intensifies the postanoxic oxidative stress and prevents triggering the endogenous adaptive response such as HIF-1α activation. Currently, brain-derived neurotrophic factor-BDNF is considered to be a modulator of neuronal plasticity. In the developing brain, mature BDNF and its precursor exhibit prosurvival action through the TrkB receptor and proapoptotic functions binding to p75NTR , respectively. The aim of our experiments was to check the effects of body temperature on the postanoxic level of BDNF and on the expression of its receptors as well as on the marker of apoptosis-caspase-3 in the rat brain. Two-day-old Wistar Han rats (male/female ratio, 1:1) were exposed to anoxia in 100% nitrogen atmosphere for 10 min in different thermal conditions, which allowed them to regulate their rectal temperature at the following levels: normothermic-33°C; hyperthermic-37°C; and extremely hyperthermic-39°C. Thermal conditions during neonatal anoxia affected the level of proBDNF, BDNF as well as their receptors and caspase-3 in the forebrain. The increased BDNF protein level followed by decreased caspase-3 protein level was probably dependent on body temperature under anoxic conditions and was observed only in rats maintaining decreased body temperature. The positive effect of BDNF was not observed under hyperthermic conditions. Moreover, BDNF level changes correlated with body temperature probably affected the learning and spatial memory in juvenile rats.


Assuntos
Temperatura Corporal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Hipóxia Encefálica/metabolismo , Animais , Animais Recém-Nascidos , Asfixia Neonatal/metabolismo , Caspase 3/metabolismo , Feminino , Masculino , Ratos , Ratos Wistar , Receptor trkB/metabolismo
9.
Protoplasma ; 256(5): 1173-1183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30993471

RESUMO

The phenomenon of excessive flower abscission in yellow lupine is a process of substantial interest to the agricultural industries, because it substantially affects the yield. The aim of this work was to provide an analysis of the changes taking place precisely in the abscission zone (AZ) during early stages of flower separation. We put particular emphasis on mRNA accumulation of BOP (BLADE ON PETIOLE) gene encoding a transcriptional factor so far considered to be essential for AZ formation. Our results show that the AZ displays a particular transcriptional network active in the specific stages of its function, as reflected by the expression profile of LlBOP. Noteworthy, spatio-temporal LlBOP transcript accumulation in the elements of pedicel vascular tissue reveals divergent regulatory mechanism of its activity. We have also found that AZ cells accumulate reactive oxidative species following abscission and what is more, become active due to the increasing amount of uridine-rich small nuclear RNA, accompanied by poly(A) mRNA intensive synthesis. Our paper is a novel report for BOP involvement in the AZ functioning in relation to the whole transcriptional activity of AZ and overall discussed regarding BOP role as a potential mobile key regulator of abscission.


Assuntos
Flores/química , Regulação da Expressão Gênica de Plantas/genética , Lupinus/química , Espécies Reativas de Oxigênio
10.
Biofouling ; 34(9): 963-975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30614293

RESUMO

Materials such as polyvinyl chloride, polypropylene, and polyethylene are used for the construction of medical equipment, including inhalation equipment. Inhalation equipment, because of the wet conditions and good oxygenation, constitutes a perfect environment for microbial biofilm formation. Biofilms may affect microbiological cleanliness of inhalation facilities and installations and promote the development of pathogenic bacteria. Microbial biofilms can form even in saline environments. Therefore, the aim of this study was to evaluate the effect of medicinal brines on microbial biofilm formation on the surfaces of inhalation equipment. The study confirmed the high risk of biofilm formation on surfaces used in inhalation equipment. Isolated microorganisms belonged to potential pathogens of the respiratory system, which can pose a health threat to hospital patients. The introduction of additional contaminants increased the amount of bacterial biofilm. On the other hand, the presence of brines significantly limited the amount of biofilm, thus eliminating the risk of infections.


Assuntos
Biofilmes/efeitos dos fármacos , Equipamentos e Provisões/microbiologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Terapia Respiratória/instrumentação , Cloreto de Sódio/farmacologia , Biofilmes/crescimento & desenvolvimento , Contaminação de Equipamentos/prevenção & controle , Humanos , Polietileno , Polipropilenos , Cloreto de Polivinila , Propriedades de Superfície
11.
Pharmacy (Basel) ; 5(4)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120385

RESUMO

BACKGROUND: Recently, the European Union has introduced the Falsified Medicines Directive (FMD). Additionally, in early 2016, a Delegated Act (DA) related to the FMD was published. The main objective of this study was to evaluate the usefulness of external audits in the context of implementing new regulations provided by the FMD in the secondary care environment. METHODS: The external, in-person workflow audits were performed by an authentication company in three Polish hospital pharmacies. Each audit consisted of a combination of supervision (non-participant observation), secondary data analysis, and expert interviews with the use of an independently designed authorial Diagnostic Questionnaire. The questionnaire included information about hospital drug distribution procedures, data concerning drug usage, IT systems, medication order systems, the processes of medication dispensing, and the preparation and administration of hazardous drugs. Data analysis included a thorough examination of hospital documentation in regard to drug management. All data were subjected to qualitative analysis, with the aim of generating meaningful information through inductive inference. RESULTS: Only one dispensing location in the Polish hospitals studied has the potential to be a primary authentication area. In the audited hospitals, an Automated Drug Dispensing System and unit dose were not identified during the study. Hospital wards contained an enclosed place within the department dedicated to drug storage under the direct supervision of senior nursing staff. An electronic order system was not available. In the largest center, unused medications are re-dispensed to different hospital departments, or may be sold to various institutions. Additionally, in one hospital pharmacy, pharmacists prepared parenteral nutrition and chemotherapeutic drugs for patients admitted to the hospital. CONCLUSIONS: External audits might prove beneficial in the course of introducing new regulations into everyday settings. However, such action should be provided before the final implementation of authentication services. To sum up, FMD can impact several hospital departments.

12.
J Exp Bot ; 66(22): 7019-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26320237

RESUMO

Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.


Assuntos
Larix/metabolismo , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Citoplasma/metabolismo , Splicing de RNA
13.
Plant Cell Rep ; 34(7): 1189-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732863

RESUMO

KEY MESSAGE: In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.


Assuntos
Calreticulina/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Petunia/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Biossíntese de Proteínas , Calreticulina/genética , Retículo Endoplasmático Rugoso/ultraestrutura , Regulação da Expressão Gênica de Plantas , Germinação/genética , Petunia/genética , Petunia/metabolismo , Petunia/ultraestrutura , Proteínas de Plantas/genética , Tubo Polínico/genética , Tubo Polínico/ultraestrutura , Transporte de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética
14.
PLoS One ; 10(2): e0117337, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671569

RESUMO

Manuscript provides insights into the biology of long-lived plants, different from Arabidopsis, tomato or grass species that are widely studied. In the European larch the diplotene stage lasts approximately 5 months and it is possible to divide it into several substages and to observe each of them in details. The diplotene stage is a period of intensive microsporocyte growth associated with the synthesis and accumulation of different RNA and proteins. Larch microsporocytes display changes in chromatin morphology during this stage, alternating between 4 short stages of chromatin condensation (contraction) and 5 longer diffusion (relaxation) stages. The occurrence of a diplotene diffusion stage has been observed in many plant species. Interestingly, they have also been observed during spermiogenesis and oogenesis in animals. The aim of this study was to examine whether chromatin relaxation during the diplotene is accompanied by the synthesis and maturation of mRNA. The results reveal a correlation between the diffusion and chromatin decondensation, transcriptional activity. We also found decreasing amount of poly(A) mRNA synthesis in the consecutive diffusion stages. During the early diffusion stages, mRNA is intensively synthesized. In the nuclei large amounts of RNA polymerase II, and high levels of snRNPs were observed. In the late diffusion stages, the synthesized mRNA is not directly subjected to translation but it is stored in the nucleus, and later transported to the cytoplasm and translated. In the last diffusion stage, the level of poly(A) RNA is low, but that of splicing factors is still high. It appears that the mRNA synthesized in early stages is used during the diplotene stage and is not transmitted to dyad and tetrads. In contrast, splicing factors accumulate and are most likely transmitted to the dyad and tetrads, where they are used after the resumption of intense transcription. Similar meiotic process were observed during oogenesis in animals. This indicates the existence of an evolutionarily conserved mechanism of chromatin-based regulation of gene expression during meiotic prophase I.


Assuntos
Larix/citologia , Larix/genética , Prófase Meiótica I , Transcrição Gênica , Cromatina/genética , Cromatina/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética
15.
EMBO J ; 34(4): 544-58, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25568310

RESUMO

The interconnection between transcription and splicing is a subject of intense study. We report that Arabidopsis homologue of spliceosome disassembly factor NTR1 is required for correct expression and splicing of DOG1, a regulator of seed dormancy. Global splicing analysis in atntr1 mutants revealed a bias for downstream 5' and 3' splice site selection and an enhanced rate of exon skipping. A local reduction in PolII occupancy at misspliced exons and introns in atntr1 mutants suggests that directionality in splice site selection is a manifestation of fast PolII elongation kinetics. In agreement with this model, we found AtNTR1 to bind target genes and co-localise with PolII. A minigene analysis further confirmed that strong alternative splice sites constitute an AtNTR1-dependent transcriptional roadblock. Plants deficient in PolII endonucleolytic cleavage showed opposite effects for splice site choice and PolII occupancy compared to atntr1 mutants, and inhibition of PolII elongation or endonucleolytic cleavage in atntr1 mutant resulted in partial reversal of splicing defects. We propose that AtNTR1 is part of a transcription elongation checkpoint at alternative exons in Arabidopsis.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Éxons/genética , Proteínas Periplásmicas de Ligação/metabolismo , Sítios de Splice de RNA/genética , Mutação , Proteínas Periplásmicas de Ligação/genética , Transcrição Gênica/genética
16.
Plant Sci ; 229: 111-121, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443838

RESUMO

Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignol, the main component of lignin. Lignins, deposited in the secondary cell wall, play a role in plant defence against pathogens. We re-analysed the phylogeny of CAD/CAD-like genes using sequences from recently sequenced genomes, and analysed the temporal and spatial expression profiles of CAD/CAD-like genes in Populus trichocarpa healthy and infected plants. Three fungal pathogens (Rhizoctonia solani, Fusarium oxysporum, and Cytospora sp.), varying in lifestyle and pathogenicity, were used for plant infection. Phylogenetic analyses showed that CAD/CAD-like genes were distributed in classes represented by all members from angiosperm lineages including basal angiosperms and Selaginella. The analysed genes showed different expression profiles during development and demonstrated that three genes were involved in primary xylem maturation while five may function in secondary xylem formation. Expression analysis following inoculation with fungal pathogens, showed that five genes were induced in either stem or leaves. These results add further evidence that CAD/CAD-like genes have evolved specialised functions in plant development and defence against various pest and pathogens. Two genes (PoptrCAD11 and PoptrCAD15), which were induced under various stresses, could be treated as universal markers of plant defence using lignification or lignan biosynthesis.


Assuntos
Oxirredutases do Álcool/genética , Perfilação da Expressão Gênica , Lignanas/metabolismo , Lignina/metabolismo , Desenvolvimento Vegetal/genética , Populus/imunologia , Populus/microbiologia , Oxirredutases do Álcool/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização in Situ Fluorescente , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/genética , Xilema/anatomia & histologia
17.
PLoS One ; 9(11): e111780, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369024

RESUMO

The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.


Assuntos
Arabidopsis/citologia , Corpos Enovelados/ultraestrutura , Lupinus/citologia , Cebolas/citologia , Poli A/análise , RNA de Plantas/análise , Corpos Enovelados/química , RNA Mensageiro/análise , Ribonucleoproteínas Nucleares Pequenas/análise
18.
Ann Bot ; 113(7): 1235-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24812251

RESUMO

BACKGROUND AND AIMS: Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. METHODS: Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. KEY RESULTS: The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole. CONCLUSIONS: The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Populus/fisiologia , Transdução de Sinais , Xilema/fisiologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Transporte Biológico , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Populus/citologia , Populus/genética , Populus/crescimento & desenvolvimento , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento
19.
Planta ; 236(2): 715-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526497

RESUMO

The spatial organisation of the splicing system in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus) nuclei was studied by immunolabelling of SR proteins, snRNA, and the PANA antigen, known markers for interchromatin granule clusters in mammalian cells. Electron microscope results allowed us to determine the distribution of these molecules within the structural domains of the nucleus. Similar to animal cells, in both plant species SR proteins were localised in interchromatin granules, but contrary to animal cells contained very small amounts of snRNA. The area with the strongest snRNA and SR protein co-localisation was the perichromatin region, which may be the location of pre-mRNA splicing in the plant cell nuclei. The only observable differences in the organisation of reticular and chromocentric nuclei were the size of the speckles and the number of snRNA pools in the condensed chromatin. We conclude that, despite remarkable changes in the nuclear architecture, the organisation of the splicing system is remarkably similar in both types of plant cell nuclei.


Assuntos
Núcleo Celular/metabolismo , Lupinus/metabolismo , Cebolas/metabolismo , Proteínas de Plantas/metabolismo , RNA Nuclear Pequeno/metabolismo , Cromatina/metabolismo , Tomografia com Microscopia Eletrônica , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Lupinus/genética , Lupinus/ultraestrutura , Proteínas Nucleares/metabolismo , Cebolas/genética , Cebolas/ultraestrutura , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Precursores de RNA/genética , Splicing de RNA , RNA Nuclear Pequeno/genética
20.
Planta ; 236(1): 171-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22398640

RESUMO

The nucleolar activity of Hyacinthus orientalis L. embryo sac cells was investigated. The distributions of nascent pre-rRNA (ITS1), 26S rRNA and of the 5S rRNA and U3 snoRNA were determined using fluorescence in situ hybridization (FISH). Our results indicated the different rRNA metabolism of the H. orientalis female gametophyte cells before and after fertilization. In the target cells for the male gamete, i.e., the egg cell and the central cell whose activity is silenced in the mature embryo sac (Piecinski et al. in Sex Plant Reprod 21:247-257, 2008; Niedojadlo et al. in Planta doi: 10.1007/s00425-012-1599-9 , 2011), rRNA metabolism is directed at the accumulation of rRNPs in the cytoplasm and immature transcripts in the nucleolus. In both cells, fertilization initiates the maturation of the maternal pre-rRNA and the expression of zygotic rDNA. The resumption of rRNA transcription observed in the hyacinth zygote indicates that in plants, there is a different mechanism for the regulation of RNA Pol I activity than in animals. In synergids and antipodal cells, which have somatic functions, the nucleolar activity is correlated with the metabolic activity of these cells and changes in successive stages of embryo sac development.


Assuntos
Nucléolo Celular/genética , Fertilização/genética , Hyacinthus/crescimento & desenvolvimento , Hyacinthus/genética , Óvulo Vegetal/crescimento & desenvolvimento , RNA Ribossômico/metabolismo , Sementes/genética , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/citologia , RNA Polimerase I/metabolismo , Sementes/citologia , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...