Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 148(15): 154704, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29679958

RESUMO

Chemical waves that arise in the H2 + O2 reaction on a bimetallic Rh(111)/Ni surface have been studied in the 10-6 and 10-5 mbar range at T = 773 K with photoelectron emission microscopy (PEEM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Nickel coverages of 0.3, 0.6, and 1.0 monolayers were investigated. Coadsorbed with some oxygen, Ni starts to penetrate the Rh bulk region substantially only beyond 900 K. In the 10-5 mbar range, chemical waves are characterized by three distinct gray levels in PEEM. This number reduces to only two levels in the 10-6 mbar range. In situ LEED showed the periodic appearance of a (n × 1) (n = 8, 10) pattern during chemical waves which was assigned to a 2D-Ni oxide. With in situ AES, one observes that the bright phase in PEEM correlates with a high Ni coverage and the dark phase with a low Ni coverage.

2.
J Chem Phys ; 148(15): 154705, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29679964

RESUMO

Chemical waves in the H2 + O2 reaction on a Rh(111) surface alloyed with Ni [ΘNi < 1.5 monolayers (ML)] have been investigated in the 10-7 and 10-6 mbar range at T = 773 K using scanning photoelectron microscopy and x-ray photoelectron spectroscopy as in situ methods. The local intensity variations of the O 1s and the Ni 2p signal display an anticorrelated behavior. The coincidence of a high oxygen signal with a low Ni 2p intensity, which seemingly contradicts the chemical attraction between O and Ni, has been explained with a phase separation of the oxygen covered Rh(111)/Ni surface into a 3D-Ni oxide and into a Ni poor metallic phase. Macroscopic NiO islands (≈1 µm size) formed under reaction conditions have been identified as 2D-Ni oxide. Titration experiments of the oxygen covered Rh(111)/Ni surface with H2 demonstrated that the reactivity of oxygen is decreased by an order of magnitude through the addition of 0.6 ML Ni. An excitation mechanism is proposed in which the periodic formation and reduction of NiO modulate the catalytic activity.

3.
J Chem Phys ; 143(18): 184701, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567674

RESUMO

The bistable NH3 + O2 reaction over a Rh(110) surface was explored in the pressure range 10(-6)-10(-3) mbar and in the temperature range 300-900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...