Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637347

RESUMO

BACKGROUND: Megalin (LRP2 receptor) mediates the endocytosis of radiolabeled peptides into proximal tubular kidney cells, which may cause nephrotoxicity due to the accumulation of a radioactive tracer. The study aimed to develop a cellular model of human kidney HK2 cells with LRP2 knockout (KO) using CRISPR/Cas9 technique. This model was employed for the determination of the megalin-mediated accumulation of 68Ga- and 99mTc-labeled 15-mer peptide developed to target the vascular endothelial growth factor (VEGF) receptor in oncology radiodiagnostics. RESULTS: The gene editing in the LRP2 KO model was verified by testing two well-known megalin ligands when higher viability of KO cells was observed after gentamicin treatment at cytotoxic concentrations and lower FITC-albumin internalization by the KO cells was detected in accumulation studies. Fluorescent-activated cell sorting was used to separate genetically modified LRP2 KO cell subpopulations. Moreover, flow cytometry with a specific antibody against megalin confirmed LRP2 knockout. The verified KO model identified both 68Ga- and 99mTc-radiolabeled 15-mer peptides as megalin ligands in accumulation studies. We found that both radiolabeled 15-mers enter LRP2 KO HK2 cells to a lesser extent compared to parent cells. Differences in megalin-mediated cellular uptake depending on the radiolabeling were not observed. Using biomolecular docking, the interaction site of the 15-mer with megalin was also described. CONCLUSION: The CRISPR/Cas9 knockout of LRP2 in human kidney HK2 cells is an effective approach for the determination of radiopeptide internalization mediated by megalin. This in vitro method provided direct molecular evidence for the cellular uptake of radiolabeled anti-VEGFR 15-mer peptides via megalin.

2.
J Med Chem ; 66(4): 2422-2456, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36756805

RESUMO

The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.


Assuntos
Receptor Constitutivo de Androstano , Receptores de Esteroides , Animais , Humanos , Camundongos , Receptor Constitutivo de Androstano/agonistas , Receptor Constitutivo de Androstano/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/química
3.
Mol Nutr Food Res ; 66(9): e2200070, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184385

RESUMO

SCOPE: CYP3A4 is the most important drug-metabolizing enzyme regulated via the vitamin D receptor (VDR) in the intestine. However, less is known about VDR in the regulation of CYP3A4 and other drug-metabolizing enzymes in the liver. METHODS AND RESULTS: This study investigates whether 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ) regulates major cytochrome P450 enzymes, selected phase I and II enzymes, and transporters involved in xenobiotic and steroidal endobiotic metabolism in 2D and 3D cultures of human hepatocytes. The authors found that 1α,25(OH)2 D3 increases hepatic CYP3A4 expression and midazolam 1'-hydroxylation activity in 2D hepatocytes. The results are confirmed in 3D spheroids, where 1α,25(OH)2 D3 has comparable effect on CYP3A4 mRNA expression as 1α-hydroxyvitamin D3 , an active vitamin D metabolite. Other regulated genes such as CYP1A2, AKR1C4, SLC10A1, and SLCO4A1 display only mild changes in mRNA levels after 1α,25(OH)2 D3 treatment in 2D hepatocytes. Expression of other cytochrome P450, phase I and phase II enzyme, or transporter genes are not significantly influenced by 1α,25(OH)2 D3 . Additionally, the effect of VDR activation on CYP3A4 mRNA expression is abolished by natural dietary compound sulforaphane, a common suppressor of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). CONCLUSION: This study proposes that VDR or vitamin D supplementation is unlikely to significantly influence liver detoxification enzymes apart from CYP3A4.


Assuntos
Citocromo P-450 CYP3A , Xenobióticos , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Hepatócitos , Humanos , RNA Mensageiro , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Xenobióticos/farmacologia
4.
Arch Toxicol ; 96(1): 195-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689256

RESUMO

The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.


Assuntos
Receptores de Esteroides , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Humanos , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
5.
Arch Toxicol ; 95(1): 11-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164107

RESUMO

The pregnane X receptor (PXR, encoded by the NR1I2 gene) is a ligand-regulated transcription factor originally described as a master regulator of xenobiotic detoxification. Later, however, PXR was also shown to interact with endogenous metabolism and to be further associated with various pathological states. This review focuses predominantly on such aspects, currently less covered in literature, as the control of PXR expression per se in the context of inter-individual differences in drug metabolism. There is growing evidence that non-coding RNAs post-transcriptionally regulate PXR. Effects on PXR have especially been reported for microRNAs (miRNAs), which include miR-148a, miR-18a-5p, miR-140-3p, miR-30c-1-3p and miR-877-5p. Likewise, miRNAs control the expression of both transcription factors involved in PXR expression and regulators of PXR function. The impact of NR1I2 genetic polymorphisms on miRNA-mediated PXR regulation is also discussed. As revealed recently, long non-coding RNAs (lncRNAs) appear to interfere with PXR expression. Reciprocally, PXR activation regulates non-coding RNA expression, thus comprising another level of PXR action in addition to the direct transactivation of protein-coding genes. PXR expression is further controlled by several transcription factors (cross-regulation) giving rise to different PXR transcript variants. Controversies remain regarding the suggested role of feedback regulation (auto-regulation) of PXR expression. In this review, we comprehensively summarize the miRNA-mediated, lncRNA-mediated and transcriptional regulation of PXR expression, and we propose that deciphering the precise mechanisms of PXR expression may bridge our knowledge gap in inter-individual differences in drug metabolism and toxicity.


Assuntos
Variação Biológica da População , Variantes Farmacogenômicos , Receptor de Pregnano X/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Biotransformação , Genótipo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Farmacogenética , Fenótipo , Receptor de Pregnano X/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Cells ; 9(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255185

RESUMO

The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.


Assuntos
Diazepam/farmacologia , Domínios Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Adulto , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Receptor Constitutivo de Androstano , Feminino , Genes Reporter/efeitos dos fármacos , Genes Reporter/genética , Hepatócitos/efeitos dos fármacos , Humanos , Ligantes , Fígado/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade
7.
J Steroid Biochem Mol Biol ; 202: 105702, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505574

RESUMO

Bile acids (BAs) are important signaling molecules acting via the farnesoid X nuclear receptor (FXR) and the membrane G protein-coupled bile acid receptor 1 (GPBAR1). Besides deconjugation of BAs, the oxidoreductive enzymes of colonic bacteria and hepatocytes enable the conversion of BAs into their epimers or dehydrogenated forms. Obeticholic acid (OCA) is the first-in-class BA-derived FXR agonist approved for the treatment of primary biliary cholangitis. Herein, a library of OCA derivatives, including 7-keto, 6-ethylidene derivatives and 3ß-epimers, was synthetized and investigated in terms of interactions with FXR and GPBAR1 in transaction assays and evaluated for FXR target genes expression in human hepatocytes and C57BL/6 mice. The derivatives were further subjected to cell-free analysis employing in silico molecular docking and a TR-FRET assay. The conversion of the 3ßhydroxy epimer and its pharmacokinetics in mice were studied using LC-MS. We found that only the 3ß-hydroxy epimer of OCA (3ß-isoOCA) possesses significant activity to FXR in hepatic cells and mice. However, in a cell-free assay, 3ß-isoOCA had about 9-times lower affinity to FXR than did OCA. We observed that 3ß-isoOCA readily epimerizes to OCA in hepatocytes and murine liver. This conversion was significantly inhibited by the hydroxy-Δ5-steroid dehydrogenase inhibitor trilostane. In addition, we found that 3,7-dehydroobeticholic acid is a potent GPBAR1 agonist. We conclude that 3ß-isoOCA significantly activates FXR due to its epimerization to the more active OCA by hepatic metabolism. Other modifications as well as epimerization on the C3/C7 positions and the introduction of 6-ethylidene in the CDCA scaffold abrogate FXR agonism and alleviate GPBAR1 activation.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Isomerismo , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Clin Pharmacol Ther ; 108(4): 844-855, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320483

RESUMO

Cytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system. Three of the in vivo CYP3A4 inducers displayed much higher CYP3A4 induction capacity in 3D spheroid cultures as compared with in two-dimensional (2D) monolayer cultures. Among those, we identified AZD1208, a proviral integration site for Moloney murine leukemia virus (PIM) kinase inhibitor terminated in phase I of development due to unexpected CYP3A4 autoinduction, as a CYP3A4 inducer only active in 3D spheroids but not in 2D monolayer cultures. Gene knockdown experiments revealed that AZD1208 requires pregnane X receptor (PXR) to induce CYP3A4. Rifampicin requires solely PXR to induce CYP3A4 and CYP2B6, while phenobarbital-mediated induction of these CYPs did not show absolute dependency on either PXR or constitutive androstane receptor (CAR), suggesting its ability to switch nuclear receptor activation. Mechanistic studies into AZD1208 uncovered an involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in CYP3A4 induction that is sensitive to the culture format used, as revealed by its inhibition of ERK1/2 Tyrosine 204 phosphorylation and sensitivity to epidermal growth factor (EGF) pressure. In line, we also identified lapatinib, a dual epidermal growth factor receptor/human epidermal growth factor receptor 2 (EGFR/HER2) inhibitor, as another CYP3A4 inducer only active in 3D spheroid culture. Our findings offer insights into the pathways involved in CYP3A4 induction and suggest PHH spheroids for preclinical CYP3A4 induction screening.


Assuntos
Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Receptor Constitutivo de Androstano , Indutores do Citocromo P-450 CYP3A/toxicidade , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/enzimologia , Humanos , Fosforilação , Receptor de Pregnano X/efeitos dos fármacos , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Esferoides Celulares
9.
Acta Pharm Sin B ; 10(1): 136-152, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31998607

RESUMO

Pregnane X receptor (PXR) is the major regulator of xenobiotic metabolism. PXR itself is controlled by various signaling molecules including glucocorticoids. Moreover, negative feed-back regulation has been proposed at the transcriptional level. We examined the involvement of the 3'-untranslated region (3'-UTR) of NR1I2 mRNA and microRNAs in PXR- and glucocorticoid receptor (GR)-mediated regulation of NR1I2 gene expression. PXR ligands were found to significantly downregulate NR1I2 mRNA expression in a set of 14 human hepatocyte cultures. Similarly, PXR was downregulated by PCN in the C57/BL6 mice liver. In mechanistic studies with the full-length 3'-UTR cloned into luciferase reporter or expression vectors, we showed that the 3'-UTR reduces PXR expression. From the miRNAs tested, miR-18a-5p inhibited both NR1I2 expression and CYP3A4 gene induction. Importantly, we observed significant upregulation of miR-18a-5p expression 6 h after treatment with the PXR ligand rifampicin, which indicates a putative mechanism underlying NR1I2 negative feed-back regulation in hepatic cells. Additionally, glucocorticoids upregulated NR1I2 expression not only through the promoter region but also via 3'-UTR regulation, which likely involves downregulation of miR-18a-5p. We conclude that miR-18a-5p is involved in the down-regulation of NR1I2 expression by its ligands and in the upregulation of NR1I2 mRNA expression by glucocorticoids in hepatic cells.

10.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540101

RESUMO

Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, ß-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.


Assuntos
Aldo-Ceto Redutases/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450/metabolismo , Receptor de Pregnano X/agonistas , Sesquiterpenos/farmacologia , Idoso , Idoso de 80 Anos ou mais , Sistema Enzimático do Citocromo P-450/metabolismo , Farneseno Álcool/farmacologia , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Sesquiterpenos Monocíclicos/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Receptor de Pregnano X/metabolismo , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Toxicol Lett ; 313: 1-10, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170421

RESUMO

The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.


Assuntos
Anticarcinógenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Estilbenos/farmacologia , Animais , Anticarcinógenos/metabolismo , Apoptose/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Estilbenos/metabolismo
12.
J Clin Med ; 8(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035618

RESUMO

Polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) are closely related chronic inflammatory diseases. Glucocorticoids (GCs) are first-choice drugs for PMR and GCA, although some patients show poor responsiveness to the initial GC regimen or experience flares after GC tapering. To date, no valid biomarkers have been found to predict which patients are at most risk for developing GC resistance. In this review, we summarize PMR- and GCA-related gene polymorphisms and we associate these gene variants with GC resistance and therapeutic outcomes. A limited number of GC resistance associated-polymorphisms have been published so far, mostly related to HLA-DRB1*04 allele. Other genes such ICAM-1, TLR4 and 9, VEGF, and INFG may play a role, although discrepancies are often found among different populations. We conclude that more studies are required to identify reliable biomarkers of GC resistance. Such biomarkers could help distinguish non-responders from responders to GC treatment, with concomitant consequences for therapeutic strategy.

13.
Toxicol Lett ; 300: 81-91, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30394306

RESUMO

Resveratrol (RSV) is a stilbene phytochemical common in food and red wine. RSV inhibits cytochrome P450 CYP3A4 activity and interacts with the pregnane X receptor (PXR), the central regulator of drug/xenobiotic metabolizing enzyme expression. In this work, we comprehensively examined the effects of 13 stilbenes (trans- and cis-resveratrol, trans- and cis-piceatannol, oxyresveratrol, pterostilbene, pinostilbene, a,b-dihydroresveratrol, trans- and cis-trismethoxyresveratrol, trans-3,4,5,4'-tetramethoxystilbene, trans-2,4,3',5'-tetramethoxystilbene, trans-4-methoxystilbene), on CYP3A4 and CYP2B6 mRNA induction, and on CYP3A4/5, CYP2C8/9/19, CYP2D6, CYP2A6, CYP2E1, CYP1A2 and CYP2B6 cytochrome P450 enzyme activities. Expression experiments in five different primary human hepatocyte preparations, reporter gene assays, and ligand binding assays with pregnane X (PXR) and constitutive androstane (CAR) receptors were performed. Inhibition of cytochrome P450 enzymes was examined in human microsomes. We found that only polymethoxylated stilbenes are prone to significantly induce CYP2B6 or CYP3A4 in primary human hepatocytes via pregnane X receptor (PXR) interaction. Natural resveratrol derivatives such as trans- and cis-RSV, oxyresveratrol, pinostilbene and pterostilbene significantly inhibit CYP3A4/5 enzymatic activities; however, only trans-RSV significantly inhibits CYP3A4/5 activity (both testosterone 6ß-hydroxylation and midazolam 1´-hydroxylation) in micromolar concentrations by a non-competitive mechanism, suggesting a potential risk of food-drug interactions with CYP3A4/5 substrates.


Assuntos
Inibidores das Enzimas do Citocromo P-450/metabolismo , Interações Alimento-Droga , Receptores de Esteroides/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacologia , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Humanos , Resveratrol
14.
Front Pharmacol ; 9: 993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364229

RESUMO

The constitutive androstane receptor (CAR) is a nuclear receptor involved mainly in xenobiotic and endobiotic metabolism regulation. CAR is activated directly by its ligands via the ligand binding domain (LBD) or indirectly by inhibition of the epidermal growth factor (EGF) signaling. We found that leflunomide (LEF) and its main metabolite teriflunomide (TER), both used for autoimmune diseases treatment, induce the prototype CAR target gene CYP2B6 in primary human hepatocytes. As TER was discovered to be an EGF receptor antagonist, we sought to determine if TER is an indirect activator of CAR. In primary human hepatocytes and in differentiated HepaRG cells, we found that LEF and TER up-regulate CAR target genes CYP2B6 and CYP3A4 mRNAs and enzymatic activities. TER stimulated CAR+A mutant translocation into the nucleus but neither LEF nor TER activated the CAR LBD, CAR3 variant or pregnane X receptor (PXR) in gene reporter assays. Interestingly, TER significantly up-regulated CAR mRNA expression, a result which could be a consequence of both EGF receptor and ELK-1 transcription factor inhibition by TER or by TER-mediated activation of glucocorticoid receptor (GR), an upstream hormonal regulator of CAR. We can conclude that TER is a novel indirect CAR activator which through EGF inhibition and GR activation controls both detoxification and some intermediary metabolism genes.

15.
Toxicol In Vitro ; 52: 94-105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29902661

RESUMO

Herbal medicines have been increasingly used in the last three decades. Despite their popularity, safety issues with herbal products need to be addressed. We performed a feasibility study of the toxic responses of human induced pluripotent stem cell-derived hepatocytes (iHep cells) to phytochemicals in comparison with hepatoblasoma-derived HepG2 cells and long-term human hepatocytes (LTHHs). The iHep cells expressed typical hepatocyte markers cytochrome P450 3A4 (CYP3A4), hepatocyte nuclear factor 4α, and albumin despite the expression of immature markers α-fetoprotein and cytokeratin 19. We studied the responses of iHep cells to phytochemicals saikosaponin D, triptolide, deoxycalyciphylline B, and monocrotaline with different mode of toxicity employing MTS and lactate dehydrogenase (LDH) assays. Saikosaponin D and triptolide caused dose-dependent cytotoxicity in the iHep cells, which were more sensitive than LTHHs and HepG2 cells. Saikosaponin D-induced cytotoxicity tightly correlated with increased LDH leakage in the iHep cells. Although deoxycalyciphylline B did not exhibit toxic effect on the iHep and HepG2 cells when compared with LTHHs, it decreased CYP3A7 expression in the iHep cells and increased CYP1A2 expression in HepG2 cells. We hereby show the feasibility of using iHep cells to detect toxic effects of phytochemicals.


Assuntos
Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Compostos Fitoquímicos/toxicidade , Adolescente , Adulto , Albuminas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Estudos de Viabilidade , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Queratina-19/metabolismo , Masculino , alfa-Fetoproteínas/metabolismo
16.
Food Chem Toxicol ; 109(Pt 1): 130-142, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887089

RESUMO

Stevia rebaudiana Bertoni is a herb known for the high content of natural sweeteners in its leaves. Its main secondary metabolite stevioside is used as non-caloric sweetener. No information, however, is available on whether stevioside or steviol interact with drug-metabolizing enzymes and pose the potential risk of food-drug interactions. Similarly, data are lacking on the interactions of steviol and stevioside with key nuclear receptors controlling the expression of the main drug metabolizing enzymes. We studied the interactions of steviol and stevioside with the pregnane X (PXR), vitamin D (VDR), constitutive androstane (CAR), farnesoid X (FXR), glucocorticoid (GR) and aryl hydrocarbon (AHR) receptors, which control expression of genes of xenobiotic metabolism. In addition, the inhibitory activities of steviol and stevioside towards the major cytochrome P450 enzymes CYP3A4, CYP2C9, CYP2D6, CYP1A2 and CYP2B6 were evaluated in vitro. We found that steviol moderately activated the PXR and AHR, resulting in the induction of their target genes including CYP3A4 and CYP1A2 in primary human hepatocytes. A weak inhibition of CYP3A4 and CYP2C9 with steviol was also found. Our results provide mechanistic data indicating that stevioside and stevia sweeteners may have the potential to induce food-drug interactions, a finding that warrants future prospective clinical investigation.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Extratos Vegetais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Esteroides/metabolismo , Edulcorantes/metabolismo , Idoso , Células Cultivadas , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Inativação Metabólica , Masculino , Receptor de Pregnano X , Receptores de Hidrocarboneto Arílico/genética , Receptores de Esteroides/genética , Stevia/química
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1469-1480, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888833

RESUMO

Iron depletion (ID) has been shown to induce the liver expression of Cyp7a1, the rate-limiting enzyme initiating conversion of cholesterol to bile acids (BA), although the effect on bile acids metabolism and bile production is unknown. Therefore, we investigated changes in bile secretion and BA synthesis during diet-induced iron depletion (ID) in rats. ID increased bile flow along with augmented biliary excretion of bile acids, glutathione, cholesterol and phospholipids. Accordingly, we found transcriptional upregulation of the Cyp7a1, Cyp8b1, and Cyp27a1 BA synthetic enzymes, as well as induction of the Abcg5/8 cholesterol transporters in ID rat livers. In contrast, intravenous infusion of 3H-taurocholate failed to elicit any difference in biliary secretion of this compound in the ID rats. This corresponded with unchanged expression of canalicular rate-limiting transporters for BA as well as glutathione. We also observed that ID substantially changed the spectrum of BA in bile and decreased plasma concentrations of BA and cholesterol. Experiments with differentiated human hepatic HepaRG cells confirmed human CYP7A1 orthologue upregulation resulting from reduced iron concentrations. Results employing a luciferase reporter gene assay suggest that the transcriptional activation of the CYP7A1 promoter under ID conditions works independent of farnesoid X (FXR), pregnane X (PXR) and liver X (LXRα) receptors activation. It can be concluded that this study characterizes the molecular mechanisms of modified bile production as well as cholesterol as along with BA homeostasis during ID. We propose complex upregulation of BA synthesis, and biliary cholesterol secretion as the key factors affected by ID.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/metabolismo , Glutationa/metabolismo , Deficiências de Ferro , Animais , Linhagem Celular , Colestanotriol 26-Mono-Oxigenase/biossíntese , Colesterol 7-alfa-Hidroxilase/biossíntese , Humanos , Masculino , Ratos , Ratos Wistar , Esteroide 12-alfa-Hidroxilase/biossíntese
19.
Biomaterials ; 103: 86-100, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27372423

RESUMO

Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied, only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511, laminin-521, and fibronectin, found in human liver progenitor cells, as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels, secreted human albumin, stored glycogen, and exhibited cytochrome P450 enzyme activity and inducibility. Altogether, we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Laminina/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Materiais Biomiméticos/química , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Engenharia Tecidual/métodos
20.
Drug Metab Rev ; 48(2): 139-58, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27278216

RESUMO

The organic cation transporter 1 (OCT1) is the dominant carrier of organic cationic drugs and some positively charged endogenous compounds into hepatocytes. OCT1 has unique expression pattern. It has the highest expression among drug transporters in normal human hepatocytes with large interindividual variability, but it has negligible expression in other tissues or their tumors. Nowadays, it is clear that the regulation of SLC22A1 gene encoding OCT1 transporter is rather complex and that transactivation with hepatocyte nuclear factor 4α (HNF4α) and CCAAT-enhancer-binding protein (C/EBPs) transcription factors as well as epigenetic regulation contribute to its unique hepatocyte-specific expression pattern. Unfortunately, species- and tissue-specific regulation of OCT1 and its orthologs as well as significant down-regulation in most immortalized cell lines hamper the study of SLC22A1 gene regulation. In the current review, we summarize our current understanding of human OCT1 transporter hepatic gene regulation and we propose potential post-transcriptional regulation by predicted miRNAs. We also discuss in detail recent findings on indirect regulation of the transporter via farnesoid X receptor (FXR), glucocorticoid receptor and pregnane X (PXR) receptor, which point out to potential novel mechanisms of xenobiotic-transporting and drug-metabolizing proteins regulation in the human liver as well as to potentially novel drug-drug interaction mechanisms. We also propose that comprehensive understanding of mechanisms of SLC22A1 gene regulation could direct research for other drug transporters and drug-metabolizing enzymes highly expressed in hepatocytes and controlled by HNF4α or other liver-enriched transcription factors.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , MicroRNAs/metabolismo , Receptor de Pregnano X , Receptores de Glucocorticoides/metabolismo , Receptores de Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...